Author: Wu Chou
Publisher: CRC Press
ISBN: 0203010523
Category : Technology & Engineering
Languages : en
Pages : 413
Book Description
Over the last 20 years, approaches to designing speech and language processing algorithms have moved from methods based on linguistics and speech science to data-driven pattern recognition techniques. These techniques have been the focus of intense, fast-moving research and have contributed to significant advances in this field. Pattern Reco
Pattern Recognition in Speech and Language Processing
Author: Wu Chou
Publisher: CRC Press
ISBN: 0203010523
Category : Technology & Engineering
Languages : en
Pages : 413
Book Description
Over the last 20 years, approaches to designing speech and language processing algorithms have moved from methods based on linguistics and speech science to data-driven pattern recognition techniques. These techniques have been the focus of intense, fast-moving research and have contributed to significant advances in this field. Pattern Reco
Publisher: CRC Press
ISBN: 0203010523
Category : Technology & Engineering
Languages : en
Pages : 413
Book Description
Over the last 20 years, approaches to designing speech and language processing algorithms have moved from methods based on linguistics and speech science to data-driven pattern recognition techniques. These techniques have been the focus of intense, fast-moving research and have contributed to significant advances in this field. Pattern Reco
Computational Linguistics, Speech And Image Processing For Arabic Language
Author: Neamat El Gayar
Publisher: World Scientific
ISBN: 9813229403
Category : Computers
Languages : en
Pages : 286
Book Description
This book encompasses a collection of topics covering recent advances that are important to the Arabic language in areas of natural language processing, speech and image analysis. This book presents state-of-the-art reviews and fundamentals as well as applications and recent innovations.The book chapters by top researchers present basic concepts and challenges for the Arabic language in linguistic processing, handwritten recognition, document analysis, text classification and speech processing. In addition, it reports on selected applications in sentiment analysis, annotation, text summarization, speech and font analysis, word recognition and spotting and question answering.Moreover, it highlights and introduces some novel applications in vital areas for the Arabic language. The book is therefore a useful resource for young researchers who are interested in the Arabic language and are still developing their fundamentals and skills in this area. It is also interesting for scientists who wish to keep track of the most recent research directions and advances in this area.
Publisher: World Scientific
ISBN: 9813229403
Category : Computers
Languages : en
Pages : 286
Book Description
This book encompasses a collection of topics covering recent advances that are important to the Arabic language in areas of natural language processing, speech and image analysis. This book presents state-of-the-art reviews and fundamentals as well as applications and recent innovations.The book chapters by top researchers present basic concepts and challenges for the Arabic language in linguistic processing, handwritten recognition, document analysis, text classification and speech processing. In addition, it reports on selected applications in sentiment analysis, annotation, text summarization, speech and font analysis, word recognition and spotting and question answering.Moreover, it highlights and introduces some novel applications in vital areas for the Arabic language. The book is therefore a useful resource for young researchers who are interested in the Arabic language and are still developing their fundamentals and skills in this area. It is also interesting for scientists who wish to keep track of the most recent research directions and advances in this area.
Speech & Language Processing
Author: Dan Jurafsky
Publisher: Pearson Education India
ISBN: 9788131716724
Category :
Languages : en
Pages : 912
Book Description
Publisher: Pearson Education India
ISBN: 9788131716724
Category :
Languages : en
Pages : 912
Book Description
Machine Learning and Data Mining in Pattern Recognition
Author: Petra Perner
Publisher: Springer Science & Business Media
ISBN: 364203070X
Category : Computers
Languages : en
Pages : 837
Book Description
There is no royal road to science, and only those who do not dread the fatiguing climb of its steep paths have a chance of gaining its luminous summits. Karl Marx A Universial Genius of the 19th Century Many scientists from all over the world during the past two years since the MLDM 2007 have come along on the stony way to the sunny summit of science and have worked hard on new ideas and applications in the area of data mining in pattern r- ognition. Our thanks go to all those who took part in this year's MLDM. We appre- ate their submissions and the ideas shared with the Program Committee. We received over 205 submissions from all over the world to the International Conference on - chine Learning and Data Mining, MLDM 2009. The Program Committee carefully selected the best papers for this year’s program and gave detailed comments on each submitted paper. There were 63 papers selected for oral presentation and 17 papers for poster presentation. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data-mining methods for the different multimedia data types such as image mining, text mining, video mining and Web mining. Among these topics this year were special contributions to subtopics such as attribute discre- zation and data preparation, novelty and outlier detection, and distances and simila- ties.
Publisher: Springer Science & Business Media
ISBN: 364203070X
Category : Computers
Languages : en
Pages : 837
Book Description
There is no royal road to science, and only those who do not dread the fatiguing climb of its steep paths have a chance of gaining its luminous summits. Karl Marx A Universial Genius of the 19th Century Many scientists from all over the world during the past two years since the MLDM 2007 have come along on the stony way to the sunny summit of science and have worked hard on new ideas and applications in the area of data mining in pattern r- ognition. Our thanks go to all those who took part in this year's MLDM. We appre- ate their submissions and the ideas shared with the Program Committee. We received over 205 submissions from all over the world to the International Conference on - chine Learning and Data Mining, MLDM 2009. The Program Committee carefully selected the best papers for this year’s program and gave detailed comments on each submitted paper. There were 63 papers selected for oral presentation and 17 papers for poster presentation. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data-mining methods for the different multimedia data types such as image mining, text mining, video mining and Web mining. Among these topics this year were special contributions to subtopics such as attribute discre- zation and data preparation, novelty and outlier detection, and distances and simila- ties.
Deep Learning for NLP and Speech Recognition
Author: Uday Kamath
Publisher: Springer
ISBN: 3030145964
Category : Computers
Languages : en
Pages : 640
Book Description
This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience. Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book. The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech Introduction The first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning Basics The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and Speech The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies.
Publisher: Springer
ISBN: 3030145964
Category : Computers
Languages : en
Pages : 640
Book Description
This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience. Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book. The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech Introduction The first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning Basics The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and Speech The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies.
Pattern Recognition in Speech and Language Processing
Author: Wu Chou
Publisher: CRC Press
ISBN: 9781135702236
Category : Technology & Engineering
Languages : en
Pages : 416
Book Description
Over the last 20 years, approaches to designing speech and language processing algorithms have moved from methods based on linguistics and speech science to data-driven pattern recognition techniques. These techniques have been the focus of intense, fast-moving research and have contributed to significant advances in this field. Pattern Recognition in Speech and Language Processing offers a systematic, up-to-date presentation of these recent developments. It begins with the fundamentals and recent theoretical advances in pattern recognition, with emphasis on classifier design criteria and optimization procedures. The focus then shifts to the application of these techniques to speech processing, with chapters exploring advances in applying pattern recognition to real speech and audio processing systems. The final section of the book examines topics related to pattern recognition in language processing: topics that represent promising new trends with direct impact on information processing systems for the Web, broadcast news, and other content-rich information resources. Each self-contained chapter includes figures, tables, diagrams, and references. The collective effort of experts at the forefront of the field, Pattern Recognition in Speech and Language Processing offers in-depth, insightful discussions on new developments and contains a wealth of information integral to the further development of human-machine communications.
Publisher: CRC Press
ISBN: 9781135702236
Category : Technology & Engineering
Languages : en
Pages : 416
Book Description
Over the last 20 years, approaches to designing speech and language processing algorithms have moved from methods based on linguistics and speech science to data-driven pattern recognition techniques. These techniques have been the focus of intense, fast-moving research and have contributed to significant advances in this field. Pattern Recognition in Speech and Language Processing offers a systematic, up-to-date presentation of these recent developments. It begins with the fundamentals and recent theoretical advances in pattern recognition, with emphasis on classifier design criteria and optimization procedures. The focus then shifts to the application of these techniques to speech processing, with chapters exploring advances in applying pattern recognition to real speech and audio processing systems. The final section of the book examines topics related to pattern recognition in language processing: topics that represent promising new trends with direct impact on information processing systems for the Web, broadcast news, and other content-rich information resources. Each self-contained chapter includes figures, tables, diagrams, and references. The collective effort of experts at the forefront of the field, Pattern Recognition in Speech and Language Processing offers in-depth, insightful discussions on new developments and contains a wealth of information integral to the further development of human-machine communications.
Applied Pattern Recognition
Author: Dietrich W.R. Paulus
Publisher: Morgan Kaufmann Publishers
ISBN:
Category : Computers
Languages : en
Pages : 430
Book Description
This book demonstrates the efficiency of the C++ programming language in the realm of pattern recognition and pattern analysis. It introduces the basics of software engineering, image and speech processing, als well as fundamental mathematical tools for pattern recognition. Step by step the C++ programming language is discribed. Each step is illustrated by examples based on challenging problems in image und speech processing. Particular emphasis is put on object-oriented programming and the implementation of efficient algorithms. The book proposes a general class hierarchy for image segmentation. The essential parts of an implementation are presented. An object-oriented system for speech classification based on stochastic models is described.
Publisher: Morgan Kaufmann Publishers
ISBN:
Category : Computers
Languages : en
Pages : 430
Book Description
This book demonstrates the efficiency of the C++ programming language in the realm of pattern recognition and pattern analysis. It introduces the basics of software engineering, image and speech processing, als well as fundamental mathematical tools for pattern recognition. Step by step the C++ programming language is discribed. Each step is illustrated by examples based on challenging problems in image und speech processing. Particular emphasis is put on object-oriented programming and the implementation of efficient algorithms. The book proposes a general class hierarchy for image segmentation. The essential parts of an implementation are presented. An object-oriented system for speech classification based on stochastic models is described.
Spoken Language Processing
Author: Xuedong Huang
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 1018
Book Description
Remarkable progress is being made in spoken language processing, but many powerful techniques have remained hidden in conference proceedings and academic papers, inaccessible to most practitioners. In this book, the leaders of the Speech Technology Group at Microsoft Research share these advances -- presenting not just the latest theory, but practical techniques for building commercially viable products.KEY TOPICS: Spoken Language Processing draws upon the latest advances and techniques from multiple fields: acoustics, phonology, phonetics, linguistics, semantics, pragmatics, computer science, electrical engineering, mathematics, syntax, psychology, and beyond. The book begins by presenting essential background on speech production and perception, probability and information theory, and pattern recognition. The authors demonstrate how to extract useful information from the speech signal; then present a variety of contemporary speech recognition techniques, including hidden Markov models, acoustic and language modeling, and techniques for improving resistance to environmental noise. Coverage includes decoders, search algorithms, large vocabulary speech recognition techniques, text-to-speech, spoken language dialog management, user interfaces, and interaction with non-speech interface modalities. The authors also present detailed case studies based on Microsoft's advanced prototypes, including the Whisper speech recognizer, Whistler text-to-speech system, and MiPad handheld computer.MARKET: For anyone involved with planning, designing, building, or purchasing spoken language technology.
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 1018
Book Description
Remarkable progress is being made in spoken language processing, but many powerful techniques have remained hidden in conference proceedings and academic papers, inaccessible to most practitioners. In this book, the leaders of the Speech Technology Group at Microsoft Research share these advances -- presenting not just the latest theory, but practical techniques for building commercially viable products.KEY TOPICS: Spoken Language Processing draws upon the latest advances and techniques from multiple fields: acoustics, phonology, phonetics, linguistics, semantics, pragmatics, computer science, electrical engineering, mathematics, syntax, psychology, and beyond. The book begins by presenting essential background on speech production and perception, probability and information theory, and pattern recognition. The authors demonstrate how to extract useful information from the speech signal; then present a variety of contemporary speech recognition techniques, including hidden Markov models, acoustic and language modeling, and techniques for improving resistance to environmental noise. Coverage includes decoders, search algorithms, large vocabulary speech recognition techniques, text-to-speech, spoken language dialog management, user interfaces, and interaction with non-speech interface modalities. The authors also present detailed case studies based on Microsoft's advanced prototypes, including the Whisper speech recognizer, Whistler text-to-speech system, and MiPad handheld computer.MARKET: For anyone involved with planning, designing, building, or purchasing spoken language technology.
Mathematical Foundations of Speech and Language Processing
Author: Mark Johnson
Publisher: Springer Science & Business Media
ISBN: 1441990178
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Speech and language technologies continue to grow in importance as they are used to create natural and efficient interfaces between people and machines, and to automatically transcribe, extract, analyze, and route information from high-volume streams of spoken and written information. The workshops on Mathematical Foundations of Speech Processing and Natural Language Modeling were held in the Fall of 2000 at the University of Minnesota's NSF-sponsored Institute for Mathematics and Its Applications, as part of a "Mathematics in Multimedia" year-long program. Each workshop brought together researchers in the respective technologies on the one hand, and mathematicians and statisticians on the other hand, for an intensive week of cross-fertilization. There is a long history of benefit from introducing mathematical techniques and ideas to speech and language technologies. Examples include the source-channel paradigm, hidden Markov models, decision trees, exponential models and formal languages theory. It is likely that new mathematical techniques, or novel applications of existing techniques, will once again prove pivotal for moving the field forward. This volume consists of original contributions presented by participants during the two workshops. Topics include language modeling, prosody, acoustic-phonetic modeling, and statistical methodology.
Publisher: Springer Science & Business Media
ISBN: 1441990178
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Speech and language technologies continue to grow in importance as they are used to create natural and efficient interfaces between people and machines, and to automatically transcribe, extract, analyze, and route information from high-volume streams of spoken and written information. The workshops on Mathematical Foundations of Speech Processing and Natural Language Modeling were held in the Fall of 2000 at the University of Minnesota's NSF-sponsored Institute for Mathematics and Its Applications, as part of a "Mathematics in Multimedia" year-long program. Each workshop brought together researchers in the respective technologies on the one hand, and mathematicians and statisticians on the other hand, for an intensive week of cross-fertilization. There is a long history of benefit from introducing mathematical techniques and ideas to speech and language technologies. Examples include the source-channel paradigm, hidden Markov models, decision trees, exponential models and formal languages theory. It is likely that new mathematical techniques, or novel applications of existing techniques, will once again prove pivotal for moving the field forward. This volume consists of original contributions presented by participants during the two workshops. Topics include language modeling, prosody, acoustic-phonetic modeling, and statistical methodology.
Spoken Language Generation and Understanding
Author: J.C. Simon
Publisher: Springer Science & Business Media
ISBN: 940099091X
Category : Mathematics
Languages : en
Pages : 577
Book Description
Proceedings of the NATO Advanced Study Institute, Bonas, France, June 26-July 7, 1979
Publisher: Springer Science & Business Media
ISBN: 940099091X
Category : Mathematics
Languages : en
Pages : 577
Book Description
Proceedings of the NATO Advanced Study Institute, Bonas, France, June 26-July 7, 1979