Pattern Recognition Algorithms for Data Mining

Pattern Recognition Algorithms for Data Mining PDF Author: Sankar K. Pal
Publisher: CRC Press
ISBN: 1135436401
Category : Computers
Languages : en
Pages : 275

Get Book Here

Book Description
Pattern Recognition Algorithms for Data Mining addresses different pattern recognition (PR) tasks in a unified framework with both theoretical and experimental results. Tasks covered include data condensation, feature selection, case generation, clustering/classification, and rule generation and evaluation. This volume presents various theories, methodologies, and algorithms, using both classical approaches and hybrid paradigms. The authors emphasize large datasets with overlapping, intractable, or nonlinear boundary classes, and datasets that demonstrate granular computing in soft frameworks. Organized into eight chapters, the book begins with an introduction to PR, data mining, and knowledge discovery concepts. The authors analyze the tasks of multi-scale data condensation and dimensionality reduction, then explore the problem of learning with support vector machine (SVM). They conclude by highlighting the significance of granular computing for different mining tasks in a soft paradigm.

Pattern Recognition Algorithms for Data Mining

Pattern Recognition Algorithms for Data Mining PDF Author: Sankar K. Pal
Publisher: CRC Press
ISBN: 1135436401
Category : Computers
Languages : en
Pages : 275

Get Book Here

Book Description
Pattern Recognition Algorithms for Data Mining addresses different pattern recognition (PR) tasks in a unified framework with both theoretical and experimental results. Tasks covered include data condensation, feature selection, case generation, clustering/classification, and rule generation and evaluation. This volume presents various theories, methodologies, and algorithms, using both classical approaches and hybrid paradigms. The authors emphasize large datasets with overlapping, intractable, or nonlinear boundary classes, and datasets that demonstrate granular computing in soft frameworks. Organized into eight chapters, the book begins with an introduction to PR, data mining, and knowledge discovery concepts. The authors analyze the tasks of multi-scale data condensation and dimensionality reduction, then explore the problem of learning with support vector machine (SVM). They conclude by highlighting the significance of granular computing for different mining tasks in a soft paradigm.

Pattern Discovery Using Sequence Data Mining

Pattern Discovery Using Sequence Data Mining PDF Author: Pradeep Kumar
Publisher:
ISBN: 9781613500583
Category : Sequential pattern mining
Languages : en
Pages : 272

Get Book Here

Book Description
"This book provides a comprehensive view of sequence mining techniques, and present current research and case studies in Pattern Discovery in Sequential data authored by researchers and practitioners"--

Patterns of Discovery

Patterns of Discovery PDF Author: Norwood Russell Hanson
Publisher: CUP Archive
ISBN:
Category : Science
Languages : en
Pages : 260

Get Book Here

Book Description


The Pattern Future

The Pattern Future PDF Author: Mark R. Anderson
Publisher: FiReBooks
ISBN: 9780996725446
Category :
Languages : en
Pages : 240

Get Book Here

Book Description
Renowned technology and economics forecaster Mark Anderson reveals hidden patterns beneath the art and science of predicting the future. Through a series of personal vignettes, Anderson exposes a complex web of causes, influences, and effects that propel today's world, then describes strategies that he employs to lay bare new trends, to make new discoveries in a wide variety of disciplines, and to accurately foresee future events.

Data Mining

Data Mining PDF Author: Krzysztof J. Cios
Publisher: Springer Science & Business Media
ISBN: 0387367950
Category : Computers
Languages : en
Pages : 601

Get Book Here

Book Description
This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes Data Mining from other texts in this area. The book provides a suite of exercises and includes links to instructional presentations. Furthermore, it contains appendices of relevant mathematical material.

Feature Selection for Knowledge Discovery and Data Mining

Feature Selection for Knowledge Discovery and Data Mining PDF Author: Huan Liu
Publisher: Springer Science & Business Media
ISBN: 1461556899
Category : Computers
Languages : en
Pages : 225

Get Book Here

Book Description
As computer power grows and data collection technologies advance, a plethora of data is generated in almost every field where computers are used. The com puter generated data should be analyzed by computers; without the aid of computing technologies, it is certain that huge amounts of data collected will not ever be examined, let alone be used to our advantages. Even with today's advanced computer technologies (e. g. , machine learning and data mining sys tems), discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Taking its simplest form, raw data are represented in feature-values. The size of a dataset can be measUJĀ·ed in two dimensions, number of features (N) and number of instances (P). Both Nand P can be enormously large. This enormity may cause serious problems to many data mining systems. Feature selection is one of the long existing methods that deal with these problems. Its objective is to select a minimal subset of features according to some reasonable criteria so that the original task can be achieved equally well, if not better. By choosing a minimal subset offeatures, irrelevant and redundant features are removed according to the criterion. When N is reduced, the data space shrinks and in a sense, the data set is now a better representative of the whole data population. If necessary, the reduction of N can also give rise to the reduction of P by eliminating duplicates.

Data Mining and Knowledge Discovery for Process Monitoring and Control

Data Mining and Knowledge Discovery for Process Monitoring and Control PDF Author: Xue Z. Wang
Publisher: Springer Science & Business Media
ISBN: 1447104218
Category : Computers
Languages : en
Pages : 263

Get Book Here

Book Description
Modern computer-based control systems are able to collect a large amount of information, display it to operators and store it in databases but the interpretation of the data and the subsequent decision making relies mainly on operators with little computer support. This book introduces developments in automatic analysis and interpretation of process-operational data both in real-time and over the operational history, and describes new concepts and methodologies for developing intelligent, state space-based systems for process monitoring, control and diagnosis. The book brings together new methods and algorithms from process monitoring and control, data mining and knowledge discovery, artificial intelligence, pattern recognition, and causal relationship discovery, as well as signal processing. It also provides a framework for integrating plant operators and supervisors into the design of process monitoring and control systems.

Local Pattern Detection

Local Pattern Detection PDF Author: Katharina Morik
Publisher: Springer Science & Business Media
ISBN: 3540265430
Category : Computers
Languages : en
Pages : 242

Get Book Here

Book Description
This collection of 13 selected papers originates from the International Seminar on Local Pattern Detection, held in Dagstuhl Castle, Germany in April 2004. This state-of-the-art survey on the emerging field Local Pattern Detection addresses four main topics. Three papers cover frequent set mining, four cover subgroup discovery, three cover the statistical view, and three papers are devoted to time phenomena.

Community detection and mining in social media

Community detection and mining in social media PDF Author: Lei Tang
Publisher: Springer Nature
ISBN: 3031019008
Category : Computers
Languages : en
Pages : 126

Get Book Here

Book Description
The past decade has witnessed the emergence of participatory Web and social media, bringing people together in many creative ways. Millions of users are playing, tagging, working, and socializing online, demonstrating new forms of collaboration, communication, and intelligence that were hardly imaginable just a short time ago. Social media also helps reshape business models, sway opinions and emotions, and opens up numerous possibilities to study human interaction and collective behavior in an unparalleled scale. This lecture, from a data mining perspective, introduces characteristics of social media, reviews representative tasks of computing with social media, and illustrates associated challenges. It introduces basic concepts, presents state-of-the-art algorithms with easy-to-understand examples, and recommends effective evaluation methods. In particular, we discuss graph-based community detection techniques and many important extensions that handle dynamic, heterogeneous networks in social media. We also demonstrate how discovered patterns of communities can be used for social media mining. The concepts, algorithms, and methods presented in this lecture can help harness the power of social media and support building socially-intelligent systems. This book is an accessible introduction to the study of \emph{community detection and mining in social media}. It is an essential reading for students, researchers, and practitioners in disciplines and applications where social media is a key source of data that piques our curiosity to understand, manage, innovate, and excel. This book is supported by additional materials, including lecture slides, the complete set of figures, key references, some toy data sets used in the book, and the source code of representative algorithms. The readers are encouraged to visit the book website for the latest information. Table of Contents: Social Media and Social Computing / Nodes, Ties, and Influence / Community Detection and Evaluation / Communities in Heterogeneous Networks / Social Media Mining

Practical Graph Mining with R

Practical Graph Mining with R PDF Author: Nagiza F. Samatova
Publisher: CRC Press
ISBN: 1439860858
Category : Business & Economics
Languages : en
Pages : 489

Get Book Here

Book Description
Discover Novel and Insightful Knowledge from Data Represented as a GraphPractical Graph Mining with R presents a "do-it-yourself" approach to extracting interesting patterns from graph data. It covers many basic and advanced techniques for the identification of anomalous or frequently recurring patterns in a graph, the discovery of groups or cluste