Patient-Specific Computational Modeling

Patient-Specific Computational Modeling PDF Author:
Publisher: Springer
ISBN: 9789400745537
Category :
Languages : en
Pages : 204

Get Book

Book Description

Patient-Specific Computational Modeling

Patient-Specific Computational Modeling PDF Author:
Publisher: Springer
ISBN: 9789400745537
Category :
Languages : en
Pages : 204

Get Book

Book Description


Patient-Specific Computational Modeling

Patient-Specific Computational Modeling PDF Author: Begoña Calvo Lopez
Publisher: Springer Science & Business Media
ISBN: 9400745524
Category : Technology & Engineering
Languages : en
Pages : 196

Get Book

Book Description
This book addresses patient-specific modeling. It integrates computational modeling, experimental procedures, imagine clinical segmentation and mesh generation with the finite element method (FEM) to solve problems in computational biomedicine and bioengineering. Specific areas of interest include cardiovascular problems, ocular and muscular systems and soft tissue modeling. Patient-specific modeling has been the subject of serious research over the last seven years and interest in the area is continually growing and this area is expected to further develop in the near future.

Artificial Intelligence for Computational Modeling of the Heart

Artificial Intelligence for Computational Modeling of the Heart PDF Author: Tommaso Mansi
Publisher: Academic Press
ISBN: 012817594X
Category : Science
Languages : en
Pages : 274

Get Book

Book Description
Artificial Intelligence for Computational Modeling of the Heart presents recent research developments towards streamlined and automatic estimation of the digital twin of a patient's heart by combining computational modeling of heart physiology and artificial intelligence. The book first introduces the major aspects of multi-scale modeling of the heart, along with the compromises needed to achieve subject-specific simulations. Reader will then learn how AI technologies can unlock robust estimations of cardiac anatomy, obtain meta-models for real-time biophysical computations, and estimate model parameters from routine clinical data. Concepts are all illustrated through concrete clinical applications. Presents recent advances in computational modeling of heart function and artificial intelligence technologies for subject-specific applications Discusses AI-based technologies for robust anatomical modeling from medical images, data-driven reduction of multi-scale cardiac models, and estimations of physiological parameters from clinical data Illustrates the technology through concrete clinical applications and discusses potential impacts and next steps needed for clinical translation

Computational Modeling in Biomedical Engineering and Medical Physics

Computational Modeling in Biomedical Engineering and Medical Physics PDF Author: Alexandru Morega
Publisher: Academic Press
ISBN: 0128178973
Category : Science
Languages : en
Pages : 320

Get Book

Book Description
Mathematical and numerical modelling of engineering problems in medicine is aimed at unveiling and understanding multidisciplinary interactions and processes and providing insights useful to clinical care and technology advances for better medical equipment and systems. When modelling medical problems, the engineer is confronted with multidisciplinary problems of electromagnetism, heat and mass transfer, and structural mechanics with, possibly, different time and space scales, which may raise concerns in formulating consistent, solvable mathematical models. Computational Medical Engineering presents a number of engineering for medicine problems that may be encountered in medical physics, procedures, diagnosis and monitoring techniques, including electrical activity of the heart, hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods. The authors discuss the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling (e.g., criteria for well-posed problems); physics scaling (homogenization techniques); Constructal Law criteria in morphing shape and structure of systems with internal flows; computational domain construction (CAD and, or reconstruction techniques based on medical images); numerical modelling issues, and validation techniques used to ascertain numerical simulation results. In addition, new ideas and venues to investigate and understand finer scale models and merge them into continuous media medical physics are provided as case studies. Presents the fundamentals of mathematical and numerical modeling of engineering problems in medicine Discusses many of the most common modelling scenarios for Biomedical Engineering, including, electrical activity of the heart hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods Includes discussion of the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling, physics scaling, Constructal Law criteria in morphing shape and structure of systems with internal flows, computational domain construction, numerical modelling issues, and validation techniques used to ascertain numerical simulation results

Biomedical Imaging and Computational Modeling in Biomechanics

Biomedical Imaging and Computational Modeling in Biomechanics PDF Author: Ugo Andreaus
Publisher: Springer Science & Business Media
ISBN: 940074269X
Category : Technology & Engineering
Languages : en
Pages : 208

Get Book

Book Description
This book collects the state-of-art and new trends in image analysis and biomechanics. It covers a wide field of scientific and cultural topics, ranging from remodeling of bone tissue under the mechanical stimulus up to optimizing the performance of sports equipment, through the patient-specific modeling in orthopedics, microtomography and its application in oral and implant research, computational modeling in the field of hip prostheses, image based model development and analysis of the human knee joint, kinematics of the hip joint, micro-scale analysis of compositional and mechanical properties of dentin, automated techniques for cervical cell image analysis, and biomedical imaging and computational modeling in cardiovascular disease. The book will be of interest to researchers, Ph.D students, and graduate students with multidisciplinary interests related to image analysis and understanding, medical imaging, biomechanics, simulation and modeling, experimental analysis

Patient-Specific Modeling of the Cardiovascular System

Patient-Specific Modeling of the Cardiovascular System PDF Author: Roy C.P. Kerckhoffs
Publisher: Springer Science & Business Media
ISBN: 1441966919
Category : Science
Languages : en
Pages : 253

Get Book

Book Description
Peter Hunter Computational physiology for the cardiovascular system is entering a new and exciting phase of clinical application. Biophysically based models of the human heart and circulation, based on patient-specific anatomy but also informed by po- lation atlases and incorporating a great deal of mechanistic understanding at the cell, tissue, and organ levels, offer the prospect of evidence-based diagnosis and treatment of cardiovascular disease. The clinical value of patient-specific modeling is well illustrated in application areas where model-based interpretation of clinical images allows a more precise analysis of disease processes than can otherwise be achieved. For example, Chap. 6 in this volume, by Speelman et al. , deals with the very difficult problem of trying to predict whether and when an abdominal aortic aneurysm might burst. This requires automated segmentation of the vascular geometry from magnetic re- nance images and finite element analysis of wall stress using large deformation elasticity theory applied to the geometric model created from the segmentation. The time-varying normal and shear stress acting on the arterial wall is estimated from the arterial pressure and flow distributions. Thrombus formation is identified as a potentially important contributor to changed material properties of the arterial wall. Understanding how the wall adapts and remodels its material properties in the face of changes in both the stress loading and blood constituents associated with infl- matory processes (IL6, CRP, MMPs, etc.

Computational Modeling of Genetic and Biochemical Networks

Computational Modeling of Genetic and Biochemical Networks PDF Author: James M. Bower
Publisher: MIT Press
ISBN: 9780262524230
Category : Computers
Languages : en
Pages : 386

Get Book

Book Description
How new modeling techniques can be used to explore functionally relevant molecular and cellular relationships.

Computational Modeling in Cognition

Computational Modeling in Cognition PDF Author: Stephan Lewandowsky
Publisher: SAGE
ISBN: 1452236194
Category : Psychology
Languages : en
Pages : 376

Get Book

Book Description
An accessible introduction to the principles of computational and mathematical modeling in psychology and cognitive science This practical and readable work provides students and researchers, who are new to cognitive modeling, with the background and core knowledge they need to interpret published reports, and develop and apply models of their own. The book is structured to help readers understand the logic of individual component techniques and their relationships to each other.

Computational Modeling and Simulation Examples in Bioengineering

Computational Modeling and Simulation Examples in Bioengineering PDF Author: Nenad Filipovic
Publisher: John Wiley & Sons
ISBN: 1119563941
Category : Science
Languages : en
Pages : 386

Get Book

Book Description
A systematic overview of the quickly developing field of bioengineering—with state-of-the-art modeling software! Computational Modeling and Simulation Examples in Bioengineering provides a comprehensive introduction to the emerging field of bioengineering. It provides the theoretical background necessary to simulating pathological conditions in the bones, muscles, cardiovascular tissue, and cancers, as well as lung and vertigo disease. The methodological approaches used for simulations include the finite element, dissipative particle dynamics, and lattice Boltzman. The text includes access to a state-of-the-art software package for simulating the theoretical problems. In this way, the book enhances the reader's learning capabilities in the field of biomedical engineering. The aim of this book is to provide concrete examples of applied modeling in biomedical engineering. Examples in a wide range of areas equip the reader with a foundation of knowledge regarding which problems can be modeled with which numerical methods. With more practical examples and more online software support than any competing text, this book organizes the field of computational bioengineering into an accessible and thorough introduction. Computational Modeling and Simulation Examples in Bioengineering: Includes a state-of-the-art software package enabling readers to engage in hands-on modeling of the examples in the book Provides a background on continuum and discrete modeling, along with equations and derivations for three key numerical methods Considers examples in the modeling of bones, skeletal muscles, cartilage, tissue engineering, blood flow, plaque, and more Explores stent deployment modeling as well as stent design and optimization techniques Generates different examples of fracture fixation with respect to the advantages in medical practice applications Computational Modeling and Simulation Examples in Bioengineering is an excellent textbook for students of bioengineering, as well as a support for basic and clinical research. Medical doctors and other clinical professionals will also benefit from this resource and guide to the latest modeling techniques.

Principles of Computational Modelling in Neuroscience

Principles of Computational Modelling in Neuroscience PDF Author: David Sterratt
Publisher: Cambridge University Press
ISBN: 1108483143
Category : Science
Languages : en
Pages : 553

Get Book

Book Description
Learn to use computational modelling techniques to understand the nervous system at all levels, from ion channels to networks.