Particle Methods for Multi-Scale and Multi-physics

Particle Methods for Multi-Scale and Multi-physics PDF Author: Moubin E. T. Al LIU
Publisher: World Scientific
ISBN: 9814571709
Category : Science
Languages : en
Pages : 400

Get Book Here

Book Description
Multi-scale and multi-physics modeling is useful and important for all areas in engineering and sciences. Particle Methods for Multi-Scale and Multi-Physics systematically addresses some major particle methods for modeling multi-scale and multi-physical problems in engineering and sciences. It contains different particle methods from atomistic scales to continuum scales, with emphasis on molecular dynamics (MD), dissipative particle dynamics (DPD) and smoothed particle hydrodynamics (SPH). This book covers the theoretical background, numerical techniques and many interesting applications of the particle methods discussed in this text, especially in: micro-fluidics and bio-fluidics (e.g., micro drop dynamics, movement and suspension of macro-molecules, cell deformation and migration); environmental and geophysical flows (e.g., saturated and unsaturated flows in porous media and fractures); and free surface flows with possible interacting solid objects (e.g., wave impact, liquid sloshing, water entry and exit, oil spill and boom movement). The presented methodologies, techniques and example applications will benefit students, researchers and professionals in computational engineering and sciences --

Particle Methods for Multi-Scale and Multi-physics

Particle Methods for Multi-Scale and Multi-physics PDF Author: Moubin E. T. Al LIU
Publisher: World Scientific
ISBN: 9814571709
Category : Science
Languages : en
Pages : 400

Get Book Here

Book Description
Multi-scale and multi-physics modeling is useful and important for all areas in engineering and sciences. Particle Methods for Multi-Scale and Multi-Physics systematically addresses some major particle methods for modeling multi-scale and multi-physical problems in engineering and sciences. It contains different particle methods from atomistic scales to continuum scales, with emphasis on molecular dynamics (MD), dissipative particle dynamics (DPD) and smoothed particle hydrodynamics (SPH). This book covers the theoretical background, numerical techniques and many interesting applications of the particle methods discussed in this text, especially in: micro-fluidics and bio-fluidics (e.g., micro drop dynamics, movement and suspension of macro-molecules, cell deformation and migration); environmental and geophysical flows (e.g., saturated and unsaturated flows in porous media and fractures); and free surface flows with possible interacting solid objects (e.g., wave impact, liquid sloshing, water entry and exit, oil spill and boom movement). The presented methodologies, techniques and example applications will benefit students, researchers and professionals in computational engineering and sciences --

Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics

Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics PDF Author: Francois Nicot
Publisher: Elsevier
ISBN: 0081025963
Category : Technology & Engineering
Languages : en
Pages : 388

Get Book Here

Book Description
Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics reunites some of the most recent work from the French research group MeGe GDR (National Research Group on Multiscale and Multiphysics Couplings in Geo-Environmental Mechanics) on the theme of multi-scale and multi-physics modeling of geomaterials, with a special focus on micromechanical aspects. Its offers readers a glimpse into the current state of scientific knowledge in the field, together with the most up-to-date tools and methods of analysis available. Each chapter represents a study with a different viewpoint, alternating between phenomenological/micro-mechanically enriched and purely micromechanical approaches. Throughout the book, contributing authors will highlight advances in geomaterials modeling, while also pointing out practical implications for engineers. Topics discussed include multi-scale modeling of cohesive-less geomaterials, including multi-physical processes, but also the effects of particle breakage, large deformations on the response of the material at the specimen scale and concrete materials, together with clays as cohesive geomaterials. The book concludes by looking at some engineering problems involving larger scales. - Identifies contributions in the field of geomechanics - Focuses on multi-scale linkages at small scales - Presents numerical simulations by discrete elements and tools of homogenization or change of scale

Computational Methods of Multi-Physics Problems

Computational Methods of Multi-Physics Problems PDF Author: Timon Rabczuk
Publisher: MDPI
ISBN: 3039214179
Category : Technology & Engineering
Languages : en
Pages : 128

Get Book Here

Book Description
This book offers a collection of six papers addressing problems associated with the computational modeling of multi-field problems. Some of the proposed contributions present novel computational techniques, while other topics focus on applying state-of-the-art techniques in order to solve coupled problems in various areas including the prediction of material failure during the lithiation process, which is of major importance in batteries; efficient models for flexoelectricity, which require higher-order continuity; the prediction of composite pipes under thermomechanical conditions; material failure in rock; and computational materials design. The latter exploits nano-scale modeling in order to predict various material properties for two-dimensional materials with applications in, for example, semiconductors. In summary, this book provides a good overview of the computational modeling of different multi-field problems.

Multiphysics Modeling With Finite Element Methods

Multiphysics Modeling With Finite Element Methods PDF Author: William B J Zimmerman
Publisher: World Scientific Publishing Company
ISBN: 9813106735
Category : Technology & Engineering
Languages : en
Pages : 434

Get Book Here

Book Description
Finite element methods for approximating partial differential equations that arise in science and engineering analysis find widespread application. Numerical analysis tools make the solutions of coupled physics, mechanics, chemistry, and even biology accessible to the novice modeler. Nevertheless, modelers must be aware of the limitations and difficulties in developing numerical models that faithfully represent the system they are modeling.This textbook introduces the intellectual framework for modeling with Comsol Multiphysics, a package which has unique features in representing multiply linked domains with complex geometry, highly coupled and nonlinear equation systems, and arbitrarily complicated boundary, auxiliary, and initial conditions. But with this modeling power comes great opportunities and great perils.Progressively, in the first part of the book the novice modeler develops an understanding of how to build up complicated models piecemeal and test them modularly. The second part of the book introduces advanced analysis techniques. The final part of the book deals with case studies in a broad range of application areas including nonlinear pattern formation, thin film dynamics and heterogeneous catalysis, composite and effective media for heat, mass, conductivity, and dispersion, population balances, tomography, multiphase flow, electrokinetic, microfluidic networks, plasma dynamics, and corrosion chemistry.As a revision of Process Modeling and Simulation with Finite Element Methods, this book uses the very latest features of Comsol Multiphysics. There are new case studies on multiphase flow with phase change, plasma dynamics, electromagnetohydrodynamics, microfluidic mixing, and corrosion. In addition, major improvements to the level set method for multiphase flow to ensure phase conservation is introduced.

Principles of Multiscale Modeling

Principles of Multiscale Modeling PDF Author: Weinan E
Publisher: Cambridge University Press
ISBN: 1107096545
Category : Mathematics
Languages : en
Pages : 485

Get Book Here

Book Description
A systematic discussion of the fundamental principles, written by a leading contributor to the field.

Particle-Based Methods

Particle-Based Methods PDF Author: Eugenio OƱate
Publisher: Springer Science & Business Media
ISBN: 9400707355
Category : Science
Languages : en
Pages : 275

Get Book Here

Book Description
The book contains 11 chapters written by relevant scientists in the field of particle-based methods and their applications in engineering and applied sciences. The chapters cover most particle-based techniques used in practice including the discrete element method, the smooth particle hydrodynamic method and the particle finite element method. The book will be of interest to researchers and engineers interested in the fundamentals of particle-based methods and their applications.

Vortex Methods

Vortex Methods PDF Author: Georges-Henri Cottet
Publisher: Cambridge University Press
ISBN: 9780521061704
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
Vortex methods have matured in recent years, offering an interesting alternative to finite difference and spectral methods for high resolution numerical solutions of the Navier Stokes equations. In the past three decades, research into the numerical analysis aspects of vortex methods has provided a solid mathematical background for understanding the accuracy and stability of the method. At the same time vortex methods retain their appealing physical character, which was the motivation for their introduction. This book presents and analyzes vortex methods as a tool for the direct numerical simulation of impressible viscous flows. It will interest graduate students and researchers in numerical analysis and fluid mechanics and also serve as an ideal textbook for courses in fluid dynamics.

Use Of High Performance Computing In Meteorology - Proceedings Of The Eleventh Ecmwf Workshop

Use Of High Performance Computing In Meteorology - Proceedings Of The Eleventh Ecmwf Workshop PDF Author: George Mozdzynski
Publisher: World Scientific
ISBN: 9814480274
Category : Computers
Languages : en
Pages : 323

Get Book Here

Book Description
Geosciences and, in particular, numerical weather prediction are demanding the highest levels of available computer power. The European Centre for Medium-Range Weather Forecasts, with its experience in using supercomputers in this field, organizes every other year a workshop bringing together manufacturers, computer scientists, researchers and operational users to share their experiences and to learn about the latest developments. This volume provides an excellent overview of the latest achievements and plans for the use of new parallel techniques in the fields of meteorology, climatology and oceanography.

Multiphysics Modeling

Multiphysics Modeling PDF Author: Murat Peksen
Publisher: Academic Press
ISBN: 0128119039
Category : Technology & Engineering
Languages : en
Pages : 285

Get Book Here

Book Description
Multiphysics Modelling: Materials, Components, and Systems focuses on situations where coupled phenomena involving a combination of thermal, fluid, and solid mechanics occur. Important fundamentals of the various physics that are required in multiphysics modelling are introduced and supported with practical problems. More advanced topics such as creep deformation, fatigue and fracture, multiphase flow or melting in porous media are tackled. 3D interactions in system architectures and energy systems such as batteries, reformer or fuel cells, and modelling of high-performance materials are exemplified. Important multiphysics modelling issues are highlighted. In addition to theory, solutions to problems, such as in linear and non-linear situations are addressed, as well as specific solutions for multiphysics modelling of fluid-solid, solid-solid and fluid-fluid interactions are given. Drawing on teaching experience, industry solutions, and the latest research, this book is the most complete guide to multiphysics modelling available for students and researchers in diverse science and engineering disciplines. - Provides a thorough intro to the theory behind multiphysics modeling - Covers both linear and non-linear material behaviors - Helps to answer practical questions such as when to use 2D or 3D modeling

Meshfree Methods for Partial Differential Equations

Meshfree Methods for Partial Differential Equations PDF Author: Michael Griebel
Publisher: Springer Science & Business Media
ISBN: 3642561039
Category : Mathematics
Languages : en
Pages : 468

Get Book Here

Book Description
Meshfree methods for the solution of partial differential equations gained much attention in recent years, not only in the engineering but also in the mathematics community. One of the reasons for this development is the fact that meshfree discretizations and particle models are often better suited to cope with geometric changes of the domain of interest, e.g. free surfaces and large deformations, than classical discretization techniques such as finite differences, finite elements or finite volumes. Another obvious advantage of meshfree discretizations is their independence of a mesh so that the costs of mesh generation are eliminated. Also, the treatment of time-dependent PDEs from a Lagrangian point of view and the coupling of particle models and continuous models gained enormous interest in recent years from a theoretical as well as from a practial point of view. This volume consists of articles which address the different meshfree methods (SPH, PUM, GFEM, EFGM, RKPM etc.) and their application in applied mathematics, physics and engineering.