Partially Supervised Learning

Partially Supervised Learning PDF Author: Friedhelm Schwenker
Publisher: Springer Science & Business Media
ISBN: 3642282571
Category : Computers
Languages : en
Pages : 168

Get Book Here

Book Description
This book constitutes thoroughly refereed revised selected papers from the First IAPR TC3 Workshop on Partially Supervised Learning, PSL 2011, held in Ulm, Germany, in September 2011. The 14 papers presented in this volume were carefully reviewed and selected for inclusion in the book, which also includes 3 invited talks. PSL 2011 dealt with methodological issues as well as real-world applications of PSL. The main methodological issues were: combination of supervised and unsupervised learning; diffusion learning; semi-supervised classification, regression, and clustering; learning with deep architectures; active learning; PSL with vague, fuzzy, or uncertain teaching signals; learning, or statistical pattern recognition; and PSL in cognitive systems. Applications of PSL included: image and signal processing; multi-modal information processing; sensor/information fusion; human computer interaction; data mining and Web mining; forensic anthropology; and bioinformatics.

Partially Supervised Learning

Partially Supervised Learning PDF Author: Friedhelm Schwenker
Publisher: Springer Science & Business Media
ISBN: 3642282571
Category : Computers
Languages : en
Pages : 168

Get Book Here

Book Description
This book constitutes thoroughly refereed revised selected papers from the First IAPR TC3 Workshop on Partially Supervised Learning, PSL 2011, held in Ulm, Germany, in September 2011. The 14 papers presented in this volume were carefully reviewed and selected for inclusion in the book, which also includes 3 invited talks. PSL 2011 dealt with methodological issues as well as real-world applications of PSL. The main methodological issues were: combination of supervised and unsupervised learning; diffusion learning; semi-supervised classification, regression, and clustering; learning with deep architectures; active learning; PSL with vague, fuzzy, or uncertain teaching signals; learning, or statistical pattern recognition; and PSL in cognitive systems. Applications of PSL included: image and signal processing; multi-modal information processing; sensor/information fusion; human computer interaction; data mining and Web mining; forensic anthropology; and bioinformatics.

Partially Supervised Learning

Partially Supervised Learning PDF Author: Zhi-Hua Zhou
Publisher: Springer
ISBN: 3642407056
Category : Computers
Languages : en
Pages : 125

Get Book Here

Book Description
This book constitutes the thoroughly refereed revised selected papers from the Second IAPR International Workshop, PSL 2013, held in Nanjing, China, in May 2013. The 10 papers included in this volume were carefully reviewed and selected from 26 submissions. Partially supervised learning is a rapidly evolving area of machine learning. It generalizes many kinds of learning paradigms including supervised and unsupervised learning, semi-supervised learning for classification and regression, transductive learning, semi-supervised clustering, multi-instance learning, weak label learning, policy learning in partially observable environments, etc.

Semi-Supervised Learning

Semi-Supervised Learning PDF Author: Olivier Chapelle
Publisher: MIT Press
ISBN: 0262514125
Category : Computers
Languages : en
Pages : 525

Get Book Here

Book Description
A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems: state-of-the-art algorithms, a taxonomy of the field, applications, benchmark experiments, and directions for future research. In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research.Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.

Introduction to Semi-Supervised Learning

Introduction to Semi-Supervised Learning PDF Author: Xiaojin Geffner
Publisher: Springer Nature
ISBN: 3031015487
Category : Computers
Languages : en
Pages : 116

Get Book Here

Book Description
Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines / Human Semi-Supervised Learning / Theory and Outlook

Web Data Mining

Web Data Mining PDF Author: Bing Liu
Publisher: Springer Science & Business Media
ISBN: 3642194605
Category : Computers
Languages : en
Pages : 637

Get Book Here

Book Description
Liu has written a comprehensive text on Web mining, which consists of two parts. The first part covers the data mining and machine learning foundations, where all the essential concepts and algorithms of data mining and machine learning are presented. The second part covers the key topics of Web mining, where Web crawling, search, social network analysis, structured data extraction, information integration, opinion mining and sentiment analysis, Web usage mining, query log mining, computational advertising, and recommender systems are all treated both in breadth and in depth. His book thus brings all the related concepts and algorithms together to form an authoritative and coherent text. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in Web mining and data mining both as a learning text and as a reference book. Professors can readily use it for classes on data mining, Web mining, and text mining. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.

Semisupervised Learning for Computational Linguistics

Semisupervised Learning for Computational Linguistics PDF Author: Steven Abney
Publisher: CRC Press
ISBN: 1420010808
Category : Business & Economics
Languages : en
Pages : 322

Get Book Here

Book Description
The rapid advancement in the theoretical understanding of statistical and machine learning methods for semisupervised learning has made it difficult for nonspecialists to keep up to date in the field. Providing a broad, accessible treatment of the theory as well as linguistic applications, Semisupervised Learning for Computational Linguistics offer

Interpretable Machine Learning

Interpretable Machine Learning PDF Author: Christoph Molnar
Publisher: Lulu.com
ISBN: 0244768528
Category : Computers
Languages : en
Pages : 320

Get Book Here

Book Description
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Structural Health Monitoring Based on Data Science Techniques

Structural Health Monitoring Based on Data Science Techniques PDF Author: Alexandre Cury
Publisher: Springer Nature
ISBN: 3030817164
Category : Computers
Languages : en
Pages : 490

Get Book Here

Book Description
The modern structural health monitoring (SHM) paradigm of transforming in situ, real-time data acquisition into actionable decisions regarding structural performance, health state, maintenance, or life cycle assessment has been accelerated by the rapid growth of “big data” availability and advanced data science. Such data availability coupled with a wide variety of machine learning and data analytics techniques have led to rapid advancement of how SHM is executed, enabling increased transformation from research to practice. This book intends to present a representative collection of such data science advancements used for SHM applications, providing an important contribution for civil engineers, researchers, and practitioners around the world.

Medical Image Computing and Computer Assisted Intervention – MICCAI 2021

Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 PDF Author: Marleen de Bruijne
Publisher: Springer Nature
ISBN: 3030871967
Category : Computers
Languages : en
Pages : 693

Get Book Here

Book Description
The eight-volume set LNCS 12901, 12902, 12903, 12904, 12905, 12906, 12907, and 12908 constitutes the refereed proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021, held in Strasbourg, France, in September/October 2021.* The 531 revised full papers presented were carefully reviewed and selected from 1630 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: image segmentation Part II: machine learning - self-supervised learning; machine learning - semi-supervised learning; and machine learning - weakly supervised learning Part III: machine learning - advances in machine learning theory; machine learning - attention models; machine learning - domain adaptation; machine learning - federated learning; machine learning - interpretability / explainability; and machine learning - uncertainty Part IV: image registration; image-guided interventions and surgery; surgical data science; surgical planning and simulation; surgical skill and work flow analysis; and surgical visualization and mixed, augmented and virtual reality Part V: computer aided diagnosis; integration of imaging with non-imaging biomarkers; and outcome/disease prediction Part VI: image reconstruction; clinical applications - cardiac; and clinical applications - vascular Part VII: clinical applications - abdomen; clinical applications - breast; clinical applications - dermatology; clinical applications - fetal imaging; clinical applications - lung; clinical applications - neuroimaging - brain development; clinical applications - neuroimaging - DWI and tractography; clinical applications - neuroimaging - functional brain networks; clinical applications - neuroimaging – others; and clinical applications - oncology Part VIII: clinical applications - ophthalmology; computational (integrative) pathology; modalities - microscopy; modalities - histopathology; and modalities - ultrasound *The conference was held virtually.

Academic Press Library in Signal Processing

Academic Press Library in Signal Processing PDF Author: Paulo S.R. Diniz
Publisher: Academic Press
ISBN: 0123972264
Category : Technology & Engineering
Languages : en
Pages : 1559

Get Book Here

Book Description
This first volume, edited and authored by world leading experts, gives a review of the principles, methods and techniques of important and emerging research topics and technologies in machine learning and advanced signal processing theory. With this reference source you will: - Quickly grasp a new area of research - Understand the underlying principles of a topic and its application - Ascertain how a topic relates to other areas and learn of the research issues yet to be resolved - Quick tutorial reviews of important and emerging topics of research in machine learning - Presents core principles in signal processing theory and shows their applications - Reference content on core principles, technologies, algorithms and applications - Comprehensive references to journal articles and other literature on which to build further, more specific and detailed knowledge - Edited by leading people in the field who, through their reputation, have been able to commission experts to write on a particular topic