Partial Inner Product Spaces

Partial Inner Product Spaces PDF Author: J-P Antoine
Publisher: Springer
ISBN: 3642051367
Category : Mathematics
Languages : en
Pages : 371

Get Book Here

Book Description
Partial Inner Product (PIP) Spaces are ubiquitous, e.g. Rigged Hilbert spaces, chains of Hilbert or Banach spaces (such as the Lebesgue spaces Lp over the real line), etc. In fact, most functional spaces used in (quantum) physics and in signal processing are of this type. The book contains a systematic analysis of PIP spaces and operators defined on them. Numerous examples are described in detail and a large bibliography is provided. Finally, the last chapters cover the many applications of PIP spaces in physics and in signal/image processing, respectively. As such, the book will be useful both for researchers in mathematics and practitioners of these disciplines.

Partial Inner Product Spaces

Partial Inner Product Spaces PDF Author: J-P Antoine
Publisher: Springer
ISBN: 3642051367
Category : Mathematics
Languages : en
Pages : 371

Get Book Here

Book Description
Partial Inner Product (PIP) Spaces are ubiquitous, e.g. Rigged Hilbert spaces, chains of Hilbert or Banach spaces (such as the Lebesgue spaces Lp over the real line), etc. In fact, most functional spaces used in (quantum) physics and in signal processing are of this type. The book contains a systematic analysis of PIP spaces and operators defined on them. Numerous examples are described in detail and a large bibliography is provided. Finally, the last chapters cover the many applications of PIP spaces in physics and in signal/image processing, respectively. As such, the book will be useful both for researchers in mathematics and practitioners of these disciplines.

Indefinite Inner Product Spaces

Indefinite Inner Product Spaces PDF Author: J. Bognar
Publisher: Springer Science & Business Media
ISBN: 364265567X
Category : Mathematics
Languages : en
Pages : 235

Get Book Here

Book Description
By definition, an indefinite inner product space is a real or complex vector space together with a symmetric (in the complex case: hermi tian) bilinear form prescribed on it so that the corresponding quadratic form assumes both positive and negative values. The most important special case arises when a Hilbert space is considered as an orthogonal direct sum of two subspaces, one equipped with the original inner prod uct, and the other with -1 times the original inner product. The subject first appeared thirty years ago in a paper of Dirac [1] on quantum field theory (d. also Pauli [lJ). Soon afterwards, Pontrja gin [1] gave the first mathematical treatment of an indefinite inner prod uct space. Pontrjagin was unaware of the investigations of Dirac and Pauli; on the other hand, he was inspired by a work of Sobolev [lJ, unpublished up to 1960, concerning a problem of mechanics. The attempts of Dirac and Pauli to apply the concept and elemen tary properties of indefinite inner product spaces to field theory have been renewed by several authors. At present it is not easy to judge which of their results will contribute to the final form of this part of physics. The following list of references should serve as a guide to the extensive literature: Bleuler [1], Gupta [lJ, Kallen and Pauli [lJ, Heisen berg [lJ-[4J, Bogoljubov, Medvedev and Polivanov [lJ, K.L. Nagy [lJ-[3], Berezin [lJ, Arons, Han and Sudarshan [1], Lee and Wick [1J.

Norm Derivatives and Characterizations of Inner Product Spaces

Norm Derivatives and Characterizations of Inner Product Spaces PDF Author: Claudi Alsina
Publisher: World Scientific
ISBN: 981428727X
Category : Mathematics
Languages : en
Pages : 199

Get Book Here

Book Description
1. Introduction. 1.1. Historical notes. 1.2. Normed linear spaces. 1.3. Strictly convex normed linear spaces. 1.4. Inner product spaces. 1.5. Orthogonalities in normed linear spaces -- 2. Norm derivatives. 2.1. Norm derivatives : Definition and basic properties. 2.2. Orthogonality relations based on norm derivatives. 2.3. p'[symbol]-orthogonal transformations. 2.4. On the equivalence of two norm derivatives. 2.5. Norm derivatives and projections in normed linear spaces. 2.6. Norm derivatives and Lagrange's identity in normed linear spaces. 2.7. On some extensions of the norm derivatives. 2.8. p-orthogonal additivity -- 3. Norm derivatives and heights. 3.1. Definition and basic properties. 3.2. Characterizations of inner product spaces involving geometrical properties of a height in a triangle. 3.3. Height functions and classical orthogonalities. 3.4. A new orthogonality relation. 3.5. Orthocenters. 3.6. A characterization of inner product spaces involving an isosceles trapezoid property. 3.7. Functional equations of the height transform -- 4. Perpendicular bisectors in Normed spaces. 4.1. Definitions and basic properties. 4.2. A new orthogonality relation. 4.3. Relations between perpendicular bisectors and classical orthogonalities. 4.4. On the radius of the circumscribed circumference of a triangle. 4.5. Circumcenters in a triangle. 4.6. Euler line in real normed space. 4.7. Functional equation of the perpendicular bisector transform -- 5. Bisectrices in real Normed spaces. 5.1. Bisectrices in real normed spaces. 5.2. A new orthogonality relation. 5.3. Functional equation of the bisectrix transform. 5.4. Generalized bisectrices in strictly convex real normed spaces. 5.5. Incenters and generalized bisectrices -- 6. Areas of triangles in Normed spaces. 6.1. Definition of four areas of triangles. 6.2. Classical properties of the areas and characterizations of inner product spaces. 6.3. Equalities between different area functions. 6.4. The area orthogonality.

An Introduction to Hilbert Space

An Introduction to Hilbert Space PDF Author: N. Young
Publisher: Cambridge University Press
ISBN: 1107717167
Category : Mathematics
Languages : en
Pages : 254

Get Book Here

Book Description
This textbook is an introduction to the theory of Hilbert space and its applications. The notion of Hilbert space is central in functional analysis and is used in numerous branches of pure and applied mathematics. Dr Young has stressed applications of the theory, particularly to the solution of partial differential equations in mathematical physics and to the approximation of functions in complex analysis. Some basic familiarity with real analysis, linear algebra and metric spaces is assumed, but otherwise the book is self-contained. It is based on courses given at the University of Glasgow and contains numerous examples and exercises (many with solutions). Thus it will make an excellent first course in Hilbert space theory at either undergraduate or graduate level and will also be of interest to electrical engineers and physicists, particularly those involved in control theory and filter design.

Inner Product Structures

Inner Product Structures PDF Author: V.I. Istratescu
Publisher: Springer Science & Business Media
ISBN: 940093713X
Category : Mathematics
Languages : en
Pages : 909

Get Book Here

Book Description
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

Trajectory Spaces, Generalized Functions and Unbounded Operators

Trajectory Spaces, Generalized Functions and Unbounded Operators PDF Author: Stephanus van Eijndhoven
Publisher: Springer
ISBN: 3540397477
Category : Mathematics
Languages : en
Pages : 277

Get Book Here

Book Description


Recent Advances in Inverse Scattering, Schur Analysis and Stochastic Processes

Recent Advances in Inverse Scattering, Schur Analysis and Stochastic Processes PDF Author: Daniel Alpay
Publisher: Birkhäuser
ISBN: 3319103350
Category : Mathematics
Languages : en
Pages : 396

Get Book Here

Book Description
The volume is dedicated to Lev Sakhnovich, who made fundamental contributions in operator theory and related topics. Besides bibliographic material, it includes a number of selected papers related to Lev Sakhnovich's research interests. The papers are related to operator identities, moment problems, random matrices and linear stochastic systems.

Theoretical Physics, Wavelets, Analysis, Genomics

Theoretical Physics, Wavelets, Analysis, Genomics PDF Author: Patrick Flandrin
Publisher: Springer Nature
ISBN: 3030458474
Category : Mathematics
Languages : en
Pages : 650

Get Book Here

Book Description
Over the course of a scientific career spanning more than fifty years, Alex Grossmann (1930-2019) made many important contributions to a wide range of areas including, among others, mathematics, numerical analysis, physics, genetics, and biology. His lasting influence can be seen not only in his research and numerous publications, but also through the relationships he cultivated with his collaborators and students. This edited volume features chapters written by some of these colleagues, as well as researchers whom Grossmann’s work and way of thinking has impacted in a decisive way. Reflecting the diversity of his interests and their interdisciplinary nature, these chapters explore a variety of current topics in quantum mechanics, elementary particles, and theoretical physics; wavelets and mathematical analysis; and genomics and biology. A scientific biography of Grossmann, along with a more personal biography written by his son, serve as an introduction. Also included are the introduction to his PhD thesis and an unpublished paper coauthored by him. Researchers working in any of the fields listed above will find this volume to be an insightful and informative work.

Quantum Physics

Quantum Physics PDF Author: A.I Lvovsky
Publisher: Springer
ISBN: 3662565846
Category : Science
Languages : en
Pages : 318

Get Book Here

Book Description
This textbook is intended to accompany a two-semester course on quantum mechanics for physics students. Along with the traditional material covered in such a course (states, operators, Schrödinger equation, hydrogen atom), it offers in-depth discussion of the Hilbert space, the nature of measurement, entanglement, and decoherence – concepts that are crucial for the understanding of quantum physics and its relation to the macroscopic world, but rarely covered in entry-level textbooks. The book uses a mathematically simple physical system – photon polarization – as the visualization tool, permitting the student to see the entangled beauty of the quantum world from the very first pages. The formal concepts of quantum physics are illustrated by examples from the forefront of modern quantum research, such as quantum communication, teleportation and nonlocality. The author adopts a Socratic pedagogy: The student is guided to develop the machinery of quantum physics independently by solving sets of carefully chosen problems. Detailed solutions are provided.

Non-Selfadjoint Operators in Quantum Physics

Non-Selfadjoint Operators in Quantum Physics PDF Author: Fabio Bagarello
Publisher: John Wiley & Sons
ISBN: 1118855280
Category : Science
Languages : en
Pages : 434

Get Book Here

Book Description
A unique discussion of mathematical methods with applications to quantum mechanics Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects presents various mathematical constructions influenced by quantum mechanics and emphasizes the spectral theory of non-adjoint operators. Featuring coverage of functional analysis and algebraic methods in contemporary quantum physics, the book discusses the recent emergence of unboundedness of metric operators, which is a serious issue in the study of parity-time-symmetric quantum mechanics. The book also answers mathematical questions that are currently the subject of rigorous analysis with potentially significant physical consequences. In addition to prompting a discussion on the role of mathematical methods in the contemporary development of quantum physics, the book features: Chapter contributions written by well-known mathematical physicists who clarify numerous misunderstandings and misnomers while shedding light on new approaches in this growing area An overview of recent inventions and advances in understanding functional analytic and algebraic methods for non-selfadjoint operators as well as the use of Krein space theory and perturbation theory Rigorous support of the progress in theoretical physics of non-Hermitian systems in addition to mathematically justified applications in various domains of physics such as nuclear and particle physics and condensed matter physics An ideal reference, Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects is useful for researchers, professionals, and academics in applied mathematics and theoretical and/or applied physics who would like to expand their knowledge of classical applications of quantum tools to address problems in their research. Also a useful resource for recent and related trends, the book is appropriate as a graduate-level and/or PhD-level text for courses on quantum mechanics and mathematical models in physics.