Author: Marius Ghergu
Publisher: Springer Nature
ISBN: 3031218566
Category : Mathematics
Languages : en
Pages : 141
Book Description
This brief research monograph uses modern mathematical methods to investigate partial differential equations with nonlinear convolution terms, enabling readers to understand the concept of a solution and its asymptotic behavior. In their full generality, these inequalities display a non-local structure. Classical methods, such as maximum principle or sub- and super-solution methods, do not apply to this context. This work discusses partial differential inequalities (instead of differential equations) for which there is no variational setting. This current work brings forward other methods that prove to be useful in understanding the concept of a solution and its asymptotic behavior related to partial differential inequalities with nonlinear convolution terms. It promotes and illustrates the use of a priori estimates, Harnack inequalities, and integral representation of solutions. One of the first monographs on this rapidly expanding field, the present work appeals to graduate and postgraduate students as well as to researchers in the field of partial differential equations and nonlinear analysis.
Partial Differential Inequalities with Nonlinear Convolution Terms
Author: Marius Ghergu
Publisher: Springer Nature
ISBN: 3031218566
Category : Mathematics
Languages : en
Pages : 141
Book Description
This brief research monograph uses modern mathematical methods to investigate partial differential equations with nonlinear convolution terms, enabling readers to understand the concept of a solution and its asymptotic behavior. In their full generality, these inequalities display a non-local structure. Classical methods, such as maximum principle or sub- and super-solution methods, do not apply to this context. This work discusses partial differential inequalities (instead of differential equations) for which there is no variational setting. This current work brings forward other methods that prove to be useful in understanding the concept of a solution and its asymptotic behavior related to partial differential inequalities with nonlinear convolution terms. It promotes and illustrates the use of a priori estimates, Harnack inequalities, and integral representation of solutions. One of the first monographs on this rapidly expanding field, the present work appeals to graduate and postgraduate students as well as to researchers in the field of partial differential equations and nonlinear analysis.
Publisher: Springer Nature
ISBN: 3031218566
Category : Mathematics
Languages : en
Pages : 141
Book Description
This brief research monograph uses modern mathematical methods to investigate partial differential equations with nonlinear convolution terms, enabling readers to understand the concept of a solution and its asymptotic behavior. In their full generality, these inequalities display a non-local structure. Classical methods, such as maximum principle or sub- and super-solution methods, do not apply to this context. This work discusses partial differential inequalities (instead of differential equations) for which there is no variational setting. This current work brings forward other methods that prove to be useful in understanding the concept of a solution and its asymptotic behavior related to partial differential inequalities with nonlinear convolution terms. It promotes and illustrates the use of a priori estimates, Harnack inequalities, and integral representation of solutions. One of the first monographs on this rapidly expanding field, the present work appeals to graduate and postgraduate students as well as to researchers in the field of partial differential equations and nonlinear analysis.
Partial Differential Inequalities with Nonlinear Convolution Terms
Author: Marius Ghergu
Publisher:
ISBN: 9783031218576
Category : Differential equations
Languages : en
Pages : 0
Book Description
This brief research monograph uses modern mathematical methods to investigate partial differential equations with nonlinear convolution terms, enabling readers to understand the concept of a solution and its asymptotic behavior. In their full generality, these inequalities display a non-local structure. Classical methods, such as maximum principle or sub- and super-solution methods, do not apply to this context. This work discusses partial differential inequalities (instead of differential equations) for which there is no variational setting. This current work brings forward other methods that prove to be useful in understanding the concept of a solution and its asymptotic behavior related to partial differential inequalities with nonlinear convolution terms. It promotes and illustrates the use of a priori estimates, Harnack inequalities, and integral representation of solutions. One of the first monographs on this rapidly expanding field, the present work appeals to graduate and postgraduate students as well as to researchers in the field of partial differential equations and nonlinear analysis.
Publisher:
ISBN: 9783031218576
Category : Differential equations
Languages : en
Pages : 0
Book Description
This brief research monograph uses modern mathematical methods to investigate partial differential equations with nonlinear convolution terms, enabling readers to understand the concept of a solution and its asymptotic behavior. In their full generality, these inequalities display a non-local structure. Classical methods, such as maximum principle or sub- and super-solution methods, do not apply to this context. This work discusses partial differential inequalities (instead of differential equations) for which there is no variational setting. This current work brings forward other methods that prove to be useful in understanding the concept of a solution and its asymptotic behavior related to partial differential inequalities with nonlinear convolution terms. It promotes and illustrates the use of a priori estimates, Harnack inequalities, and integral representation of solutions. One of the first monographs on this rapidly expanding field, the present work appeals to graduate and postgraduate students as well as to researchers in the field of partial differential equations and nonlinear analysis.
Isolated Singularities in Partial Differential Inequalities
Author: Marius Ghergu
Publisher: Cambridge University Press
ISBN: 1316495574
Category : Mathematics
Languages : en
Pages : 552
Book Description
In this monograph, the authors present some powerful methods for dealing with singularities in elliptic and parabolic partial differential inequalities. Here, the authors take the unique approach of investigating differential inequalities rather than equations, the reason being that the simplest way to study an equation is often to study a corresponding inequality; for example, using sub and superharmonic functions to study harmonic functions. Another unusual feature of the present book is that it is based on integral representation formulae and nonlinear potentials, which have not been widely investigated so far. This approach can also be used to tackle higher order differential equations. The book will appeal to graduate students interested in analysis, researchers in pure and applied mathematics, and engineers who work with partial differential equations. Readers will require only a basic knowledge of functional analysis, measure theory and Sobolev spaces.
Publisher: Cambridge University Press
ISBN: 1316495574
Category : Mathematics
Languages : en
Pages : 552
Book Description
In this monograph, the authors present some powerful methods for dealing with singularities in elliptic and parabolic partial differential inequalities. Here, the authors take the unique approach of investigating differential inequalities rather than equations, the reason being that the simplest way to study an equation is often to study a corresponding inequality; for example, using sub and superharmonic functions to study harmonic functions. Another unusual feature of the present book is that it is based on integral representation formulae and nonlinear potentials, which have not been widely investigated so far. This approach can also be used to tackle higher order differential equations. The book will appeal to graduate students interested in analysis, researchers in pure and applied mathematics, and engineers who work with partial differential equations. Readers will require only a basic knowledge of functional analysis, measure theory and Sobolev spaces.
Partial Differential Equations
Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Nonlinear Partial Differential Equations
Author: Mi-Ho Giga
Publisher: Springer Science & Business Media
ISBN: 0817646515
Category : Mathematics
Languages : en
Pages : 307
Book Description
This work will serve as an excellent first course in modern analysis. The main focus is on showing how self-similar solutions are useful in studying the behavior of solutions of nonlinear partial differential equations, especially those of parabolic type. This textbook will be an excellent resource for self-study or classroom use.
Publisher: Springer Science & Business Media
ISBN: 0817646515
Category : Mathematics
Languages : en
Pages : 307
Book Description
This work will serve as an excellent first course in modern analysis. The main focus is on showing how self-similar solutions are useful in studying the behavior of solutions of nonlinear partial differential equations, especially those of parabolic type. This textbook will be an excellent resource for self-study or classroom use.
Notes on Diffy Qs
Author: Jiri Lebl
Publisher:
ISBN: 9781706230236
Category :
Languages : en
Pages : 468
Book Description
Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.
Publisher:
ISBN: 9781706230236
Category :
Languages : en
Pages : 468
Book Description
Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.
Perspectives in Partial Differential Equations, Harmonic Analysis and Applications
Author: Dorina Mitrea
Publisher: American Mathematical Soc.
ISBN: 0821844245
Category : Mathematics
Languages : en
Pages : 446
Book Description
This volume contains a collection of papers contributed on the occasion of Mazya's 70th birthday by a distinguished group of experts of international stature in the fields of harmonic analysis, partial differential equations, function theory, and spectral analysis, reflecting the state of the art in these areas.
Publisher: American Mathematical Soc.
ISBN: 0821844245
Category : Mathematics
Languages : en
Pages : 446
Book Description
This volume contains a collection of papers contributed on the occasion of Mazya's 70th birthday by a distinguished group of experts of international stature in the fields of harmonic analysis, partial differential equations, function theory, and spectral analysis, reflecting the state of the art in these areas.
Functional Analysis, Sobolev Spaces and Partial Differential Equations
Author: Haim Brezis
Publisher: Springer Science & Business Media
ISBN: 0387709142
Category : Mathematics
Languages : en
Pages : 600
Book Description
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Publisher: Springer Science & Business Media
ISBN: 0387709142
Category : Mathematics
Languages : en
Pages : 600
Book Description
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Fourier Analysis and Nonlinear Partial Differential Equations
Author: Hajer Bahouri
Publisher: Springer Science & Business Media
ISBN: 3642168302
Category : Mathematics
Languages : en
Pages : 530
Book Description
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.
Publisher: Springer Science & Business Media
ISBN: 3642168302
Category : Mathematics
Languages : en
Pages : 530
Book Description
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.
Harnack Inequalities and Nonlinear Operators
Author: Vincenzo Vespri
Publisher: Springer Nature
ISBN: 3030737780
Category : Mathematics
Languages : en
Pages : 202
Book Description
The book contains two contributions about the work of Emmanuele DiBenedetto and a selection of original papers. The authors are some of the main experts in Harnack’s inequalities and nonlinear operators. These papers are part of the contributions presented during the conference to celebrate the 70th birthday of Prof. Emmanuele DiBenedetto, which was held at “Il Palazzone” in Cortona from June 18th to 24th, 2017. The papers are focused on current research topics regarding the qualitative properties of solutions, connections with calculus of variations, Harnack inequality and regularity theory. Some papers are also related to various applications. Many of the authors have shared with Prof. DiBenedetto an intense scientific and personal collaboration, while many others have taken inspiration from and further developed his field of research. The topics of the conference are certainly of great interest for the international mathematical community.
Publisher: Springer Nature
ISBN: 3030737780
Category : Mathematics
Languages : en
Pages : 202
Book Description
The book contains two contributions about the work of Emmanuele DiBenedetto and a selection of original papers. The authors are some of the main experts in Harnack’s inequalities and nonlinear operators. These papers are part of the contributions presented during the conference to celebrate the 70th birthday of Prof. Emmanuele DiBenedetto, which was held at “Il Palazzone” in Cortona from June 18th to 24th, 2017. The papers are focused on current research topics regarding the qualitative properties of solutions, connections with calculus of variations, Harnack inequality and regularity theory. Some papers are also related to various applications. Many of the authors have shared with Prof. DiBenedetto an intense scientific and personal collaboration, while many others have taken inspiration from and further developed his field of research. The topics of the conference are certainly of great interest for the international mathematical community.