Parametric Study of Decay of Homogeneous Isotropic Turbulence Using Large Eddy Simulation

Parametric Study of Decay of Homogeneous Isotropic Turbulence Using Large Eddy Simulation PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781719500807
Category :
Languages : en
Pages : 72

Get Book Here

Book Description
Numerical simulations of decaying homogeneous isotropic turbulence are performed with both low-order and high-order spatial discretization schemes. The turbulent Mach and Reynolds numbers for the simulations are 0.2 and 250, respectively. For the low-order schemes we use either second-order central or third-order upwind biased differencing. For higher order approximations we apply weighted essentially non-oscillatory (WENO) schemes, both with linear and nonlinear weights. There are two objectives in this preliminary effort to investigate possible schemes for large eddy simulation (LES). One is to explore the capability of a widely used low-order computational fluid dynamics (CFD) code to perform LES computations. The other is to determine the effect of higher order accuracy (fifth, seventh, and ninth order) achieved with high-order upwind biased WENO-based schemes. Turbulence statistics, such as kinetic energy, dissipation, and skewness, along with the energy spectra from simulations of the decaying turbulence problem are used to assess and compare the various numerical schemes. In addition, results from the best performing schemes are compared with those from a spectral scheme. The effects of grid density, ranging from 32 cubed to 192 cubed, on the computations are also examined. The fifth-order WENO-based scheme is found to be too dissipative, especially on the coarser grids. However, with the seventh-order and ninth-order WENO-based schemes we observe a significant improvement in accuracy relative to the lower order LES schemes, as revealed by the computed peak in the energy dissipation and by the energy spectrum. Swanson, R. C. and Rumsey, Christopher L. and Rubinstein, Robert and Balakumar, Ponnampalam and Zang, Thomas A. Langley Research Center COMPUTATIONAL FLUID DYNAMICS; HOMOGENEOUS TURBULENCE; ISOTROPIC TURBULENCE; LARGE EDDY SIMULATION; PARAMETERIZATION; DIRECT NUMERICAL SIMULATION; ESSENTIALLY NON-OSCILLATORY SCHEMES; ENERGY SPECTRA; NONLINEARITY; MACH N

Parametric Study of Decay of Homogeneous Isotropic Turbulence Using Large Eddy Simulation

Parametric Study of Decay of Homogeneous Isotropic Turbulence Using Large Eddy Simulation PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781719500807
Category :
Languages : en
Pages : 72

Get Book Here

Book Description
Numerical simulations of decaying homogeneous isotropic turbulence are performed with both low-order and high-order spatial discretization schemes. The turbulent Mach and Reynolds numbers for the simulations are 0.2 and 250, respectively. For the low-order schemes we use either second-order central or third-order upwind biased differencing. For higher order approximations we apply weighted essentially non-oscillatory (WENO) schemes, both with linear and nonlinear weights. There are two objectives in this preliminary effort to investigate possible schemes for large eddy simulation (LES). One is to explore the capability of a widely used low-order computational fluid dynamics (CFD) code to perform LES computations. The other is to determine the effect of higher order accuracy (fifth, seventh, and ninth order) achieved with high-order upwind biased WENO-based schemes. Turbulence statistics, such as kinetic energy, dissipation, and skewness, along with the energy spectra from simulations of the decaying turbulence problem are used to assess and compare the various numerical schemes. In addition, results from the best performing schemes are compared with those from a spectral scheme. The effects of grid density, ranging from 32 cubed to 192 cubed, on the computations are also examined. The fifth-order WENO-based scheme is found to be too dissipative, especially on the coarser grids. However, with the seventh-order and ninth-order WENO-based schemes we observe a significant improvement in accuracy relative to the lower order LES schemes, as revealed by the computed peak in the energy dissipation and by the energy spectrum. Swanson, R. C. and Rumsey, Christopher L. and Rubinstein, Robert and Balakumar, Ponnampalam and Zang, Thomas A. Langley Research Center COMPUTATIONAL FLUID DYNAMICS; HOMOGENEOUS TURBULENCE; ISOTROPIC TURBULENCE; LARGE EDDY SIMULATION; PARAMETERIZATION; DIRECT NUMERICAL SIMULATION; ESSENTIALLY NON-OSCILLATORY SCHEMES; ENERGY SPECTRA; NONLINEARITY; MACH N

Parametric study of decay of homogeneous isotropic turbulence using large eddy simulation

Parametric study of decay of homogeneous isotropic turbulence using large eddy simulation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 69

Get Book Here

Book Description


Large Eddy Simulation for Incompressible Flows

Large Eddy Simulation for Incompressible Flows PDF Author: P. Sagaut
Publisher: Springer Science & Business Media
ISBN: 9783540263449
Category : Computers
Languages : en
Pages : 600

Get Book Here

Book Description
First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."

Large Eddy Simulation for Incompressible Flows

Large Eddy Simulation for Incompressible Flows PDF Author: Pierre Sagaut
Publisher: Springer Science & Business Media
ISBN: 3662044161
Category : Science
Languages : en
Pages : 326

Get Book Here

Book Description
First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."

Direct and Large Eddy Simulation of Turbulence

Direct and Large Eddy Simulation of Turbulence PDF Author: NA Schumann
Publisher: Springer Science & Business Media
ISBN: 3663001970
Category : Technology & Engineering
Languages : en
Pages : 350

Get Book Here

Book Description
This volume contains papers presented to a EUROMECH-Colloquium held in Munich, September 30 to October 2, 1985. The Colloquium is number 199 in a series of colloquia inaugurated by the European Mechanics Committee. The meeting was jointly organized by the 'Lehrstuhl fur Stromungsmechanik' at the 'Technische Universitat Munchen' and the 'Institut fur Physik der Atmosphare' of the 'Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt' (DFVLR) in Oberpfaffenhofen. 'Direct' and 'large eddy simulation' are terms which denote two closely con nected methods of turbulence research. In a 'direct simulation' (DS), turbu lent motion is simulated by numerically integrating the Navier-Stokes equations in three-dimensional space and as a function of time. Besides ini tial and boundary conditions no physical simplifications are involved. Com puter resources limit the resolution in time and space, though simulations with an order of one million discrete points in space are feasible. The simu lated flow fields can be considered as true realizations of turbulent flow fields and analysed to answer questions on the basic behaviour of turbulence. Direct simulations are valid as long as all the excited scales remain within the band of resolved scales. This means that viscosity must be strong enough to damp out the not resolved scales or the simulation is restricted to a lim ited integration-time interval only. In summary, DS provides a tool to investigate turbulent motions from first principles at least for a finite band of scales.

Improved Turbulence Models Based on Large Eddy Simulation of Homogeneous, Incompressible, Turbulent Flows

Improved Turbulence Models Based on Large Eddy Simulation of Homogeneous, Incompressible, Turbulent Flows PDF Author: Stanford University. Thermosciences Division. Thermosciences Division
Publisher:
ISBN:
Category : Eddies
Languages : en
Pages : 200

Get Book Here

Book Description
The physical bases of large eddy simulation and the subgrid scale modeling it employs are studied in some detail. This investigation leads to a new scale-similarity model for the subgrid-scale turbulent Reynolds stresses.

Large-Eddy Simulations of Turbulence

Large-Eddy Simulations of Turbulence PDF Author: M. Lesieur
Publisher: Cambridge University Press
ISBN: 9780521781244
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
Large-Eddy Simulations of Turbulence is a reference for LES, direct numerical simulation and Reynolds-averaged Navier-Stokes simulation.

Aspects of Large Eddy Simulation of Homogeneous Isotropic Turbulence

Aspects of Large Eddy Simulation of Homogeneous Isotropic Turbulence PDF Author: M. Antonopoulos-Domis
Publisher:
ISBN:
Category :
Languages : en
Pages : 21

Get Book Here

Book Description


Studying Turbulence Using Numerical Simulation Databases

Studying Turbulence Using Numerical Simulation Databases PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 472

Get Book Here

Book Description


Optimal Large Eddy Simulation of Turbulence

Optimal Large Eddy Simulation of Turbulence PDF Author: Robert deLancey Moser
Publisher:
ISBN:
Category : Navier-Stokes equations
Languages : en
Pages : 184

Get Book Here

Book Description