Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series

Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series PDF Author: K. Dzhaparidze
Publisher:
ISBN: 9781461248439
Category :
Languages : en
Pages : 334

Get Book Here

Book Description

Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series

Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series PDF Author: K. Dzhaparidze
Publisher:
ISBN: 9781461248439
Category :
Languages : en
Pages : 334

Get Book Here

Book Description


Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series

Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series PDF Author: K. Dzhaparidze
Publisher: Springer Science & Business Media
ISBN: 1461248426
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
. . ) (under the assumption that the spectral density exists). For this reason, a vast amount of periodical and monographic literature is devoted to the nonparametric statistical problem of estimating the function tJ( T) and especially that of leA) (see, for example, the books [4,21,22,26,56,77,137,139,140,]). However, the empirical value t;; of the spectral density I obtained by applying a certain statistical procedure to the observed values of the variables Xl' . . . , X , usually depends in n a complicated manner on the cyclic frequency). . This fact often presents difficulties in applying the obtained estimate t;; of the function I to the solution of specific problems rela ted to the process X . Theref ore, in practice, the t obtained values of the estimator t;; (or an estimator of the covariance function tJ~( T» are almost always "smoothed," i. e. , are approximated by values of a certain sufficiently simple function 1 = 1

Spectral Analysis

Spectral Analysis PDF Author: Francis Castanié
Publisher: John Wiley & Sons
ISBN: 1118614275
Category : Technology & Engineering
Languages : en
Pages : 186

Get Book Here

Book Description
This book deals with these parametric methods, first discussing those based on time series models, Capon’s method and its variants, and then estimators based on the notions of sub-spaces. However, the book also deals with the traditional “analog” methods, now called non-parametric methods, which are still the most widely used in practical spectral analysis.

Digital Spectral Analysis

Digital Spectral Analysis PDF Author: Francis Castanié
Publisher: John Wiley & Sons
ISBN: 1118601831
Category : Mathematics
Languages : en
Pages : 297

Get Book Here

Book Description
Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature. The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models. An entire chapter is devoted to the non-parametric methods most widely used in industry. High resolution methods are detailed in a further four chapters: spectral analysis by stationary time series modeling, minimum variance, and subspace-based estimators. Finally, advanced concepts are the core of the last four chapters: spectral analysis of non-stationary random signals, space time adaptive processing: irregularly sampled data processing, particle filtering and tracking of varying sinusoids. Suitable for students, engineers working in industry, and academics at any level, this book provides a rare complete overview of the spectral analysis domain.

Selected Works of David Brillinger

Selected Works of David Brillinger PDF Author: Peter Guttorp
Publisher: Springer Science & Business Media
ISBN: 1461413443
Category : Mathematics
Languages : en
Pages : 663

Get Book Here

Book Description
This volume contains 30 of David Brillinger's most influential papers. He is an eminent statistical scientist, having published broadly in time series and point process analysis, seismology, neurophysiology, and population biology. Each of these areas are well represented in the book. The volume has been divided into four parts, each with comments by one of Dr. Brillinger's former PhD students. His more theoretical papers have comments by Victor Panaretos from Switzerland. The area of time series has commentary by Pedro Morettin from Brazil. The biologically oriented papers are commented by Tore Schweder from Norway and Haiganoush Preisler from USA, while the point process papers have comments by Peter Guttorp from USA. In addition, the volume contains a Statistical Science interview with Dr. Brillinger, and his bibliography.

Empirical Likelihood and Quantile Methods for Time Series

Empirical Likelihood and Quantile Methods for Time Series PDF Author: Yan Liu
Publisher: Springer
ISBN: 9811001529
Category : Mathematics
Languages : en
Pages : 144

Get Book Here

Book Description
This book integrates the fundamentals of asymptotic theory of statistical inference for time series under nonstandard settings, e.g., infinite variance processes, not only from the point of view of efficiency but also from that of robustness and optimality by minimizing prediction error. This is the first book to consider the generalized empirical likelihood applied to time series models in frequency domain and also the estimation motivated by minimizing quantile prediction error without assumption of true model. It provides the reader with a new horizon for understanding the prediction problem that occurs in time series modeling and a contemporary approach of hypothesis testing by the generalized empirical likelihood method. Nonparametric aspects of the methods proposed in this book also satisfactorily address economic and financial problems without imposing redundantly strong restrictions on the model, which has been true until now. Dealing with infinite variance processes makes analysis of economic and financial data more accurate under the existing results from the demonstrative research. The scope of applications, however, is expected to apply to much broader academic fields. The methods are also sufficiently flexible in that they represent an advanced and unified development of prediction form including multiple-point extrapolation, interpolation, and other incomplete past forecastings. Consequently, they lead readers to a good combination of efficient and robust estimate and test, and discriminate pivotal quantities contained in realistic time series models.

Time Series Analysis: Methods and Applications

Time Series Analysis: Methods and Applications PDF Author: Tata Subba Rao
Publisher: Elsevier
ISBN: 0444538585
Category : Mathematics
Languages : en
Pages : 778

Get Book Here

Book Description
'Handbook of Statistics' is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with volume 30 dealing with time series.

Exponential Families of Stochastic Processes

Exponential Families of Stochastic Processes PDF Author: Uwe Küchler
Publisher: Springer Science & Business Media
ISBN: 0387227652
Category : Mathematics
Languages : en
Pages : 325

Get Book Here

Book Description
A comprehensive account of the statistical theory of exponential families of stochastic processes. The book reviews the progress in the field made over the last ten years or so by the authors - two of the leading experts in the field - and several other researchers. The theory is applied to a broad spectrum of examples, covering a large number of frequently applied stochastic process models with discrete as well as continuous time. To make the reading even easier for statisticians with only a basic background in the theory of stochastic process, the first part of the book is based on classical theory of stochastic processes only, while stochastic calculus is used later. Most of the concepts and tools from stochastic calculus needed when working with inference for stochastic processes are introduced and explained without proof in an appendix. This appendix can also be used independently as an introduction to stochastic calculus for statisticians. Numerous exercises are also included.

Interpolation of Spatial Data

Interpolation of Spatial Data PDF Author: Michael L. Stein
Publisher: Springer Science & Business Media
ISBN: 1461214947
Category : Mathematics
Languages : en
Pages : 263

Get Book Here

Book Description
A summary of past work and a description of new approaches to thinking about kriging, commonly used in the prediction of a random field based on observations at some set of locations in mining, hydrology, atmospheric sciences, and geography.

Statistical Methods in Software Engineering

Statistical Methods in Software Engineering PDF Author: Nozer D. Singpurwalla
Publisher: Springer Science & Business Media
ISBN: 1461205654
Category : Computers
Languages : en
Pages : 302

Get Book Here

Book Description
In establishing a framework for dealing with uncertainties in software engineering, and for using quantitative measures in related decision-making, this text puts into perspective the large body of work having statistical content that is relevant to software engineering. Aimed at computer scientists, software engineers, and reliability analysts who have some exposure to probability and statistics, the content is pitched at a level appropriate for research workers in software reliability, and for graduate level courses in applied statistics computer science, operations research, and software engineering.