Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series

Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series PDF Author: K. Dzhaparidze
Publisher:
ISBN: 9781461248439
Category :
Languages : en
Pages : 334

Get Book Here

Book Description

Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series

Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series PDF Author: K. Dzhaparidze
Publisher:
ISBN: 9781461248439
Category :
Languages : en
Pages : 334

Get Book Here

Book Description


Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series

Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series PDF Author: K. Dzhaparidze
Publisher: Springer Science & Business Media
ISBN: 1461248426
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
. . ) (under the assumption that the spectral density exists). For this reason, a vast amount of periodical and monographic literature is devoted to the nonparametric statistical problem of estimating the function tJ( T) and especially that of leA) (see, for example, the books [4,21,22,26,56,77,137,139,140,]). However, the empirical value t;; of the spectral density I obtained by applying a certain statistical procedure to the observed values of the variables Xl' . . . , X , usually depends in n a complicated manner on the cyclic frequency). . This fact often presents difficulties in applying the obtained estimate t;; of the function I to the solution of specific problems rela ted to the process X . Theref ore, in practice, the t obtained values of the estimator t;; (or an estimator of the covariance function tJ~( T» are almost always "smoothed," i. e. , are approximated by values of a certain sufficiently simple function 1 = 1

Spectral Analysis

Spectral Analysis PDF Author: Francis Castanié
Publisher: John Wiley & Sons
ISBN: 1118614275
Category : Technology & Engineering
Languages : en
Pages : 186

Get Book Here

Book Description
This book deals with these parametric methods, first discussing those based on time series models, Capon’s method and its variants, and then estimators based on the notions of sub-spaces. However, the book also deals with the traditional “analog” methods, now called non-parametric methods, which are still the most widely used in practical spectral analysis.

Digital Spectral Analysis

Digital Spectral Analysis PDF Author: Francis Castanié
Publisher: John Wiley & Sons
ISBN: 1118601831
Category : Mathematics
Languages : en
Pages : 297

Get Book Here

Book Description
Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature. The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models. An entire chapter is devoted to the non-parametric methods most widely used in industry. High resolution methods are detailed in a further four chapters: spectral analysis by stationary time series modeling, minimum variance, and subspace-based estimators. Finally, advanced concepts are the core of the last four chapters: spectral analysis of non-stationary random signals, space time adaptive processing: irregularly sampled data processing, particle filtering and tracking of varying sinusoids. Suitable for students, engineers working in industry, and academics at any level, this book provides a rare complete overview of the spectral analysis domain.

Exponential Families of Stochastic Processes

Exponential Families of Stochastic Processes PDF Author: Uwe Küchler
Publisher: Springer Science & Business Media
ISBN: 0387227652
Category : Mathematics
Languages : en
Pages : 325

Get Book Here

Book Description
A comprehensive account of the statistical theory of exponential families of stochastic processes. The book reviews the progress in the field made over the last ten years or so by the authors - two of the leading experts in the field - and several other researchers. The theory is applied to a broad spectrum of examples, covering a large number of frequently applied stochastic process models with discrete as well as continuous time. To make the reading even easier for statisticians with only a basic background in the theory of stochastic process, the first part of the book is based on classical theory of stochastic processes only, while stochastic calculus is used later. Most of the concepts and tools from stochastic calculus needed when working with inference for stochastic processes are introduced and explained without proof in an appendix. This appendix can also be used independently as an introduction to stochastic calculus for statisticians. Numerous exercises are also included.

Interpolation of Spatial Data

Interpolation of Spatial Data PDF Author: Michael L. Stein
Publisher: Springer Science & Business Media
ISBN: 1461214947
Category : Mathematics
Languages : en
Pages : 263

Get Book Here

Book Description
A summary of past work and a description of new approaches to thinking about kriging, commonly used in the prediction of a random field based on observations at some set of locations in mining, hydrology, atmospheric sciences, and geography.

Statistical Methods in Software Engineering

Statistical Methods in Software Engineering PDF Author: Nozer D. Singpurwalla
Publisher: Springer Science & Business Media
ISBN: 1461205654
Category : Computers
Languages : en
Pages : 302

Get Book Here

Book Description
In establishing a framework for dealing with uncertainties in software engineering, and for using quantitative measures in related decision-making, this text puts into perspective the large body of work having statistical content that is relevant to software engineering. Aimed at computer scientists, software engineers, and reliability analysts who have some exposure to probability and statistics, the content is pitched at a level appropriate for research workers in software reliability, and for graduate level courses in applied statistics computer science, operations research, and software engineering.

Selected Papers of Hirotugu Akaike

Selected Papers of Hirotugu Akaike PDF Author: Emanuel Parzen
Publisher: Springer Science & Business Media
ISBN: 146121694X
Category : Mathematics
Languages : en
Pages : 432

Get Book Here

Book Description
The pioneering research of Hirotugu Akaike has an international reputation for profoundly affecting how data and time series are analyzed and modelled and is highly regarded by the statistical and technological communities of Japan and the world. His 1974 paper "A new look at the statistical model identification" (IEEE Trans Automatic Control, AC-19, 716-723) is one of the most frequently cited papers in the area of engineering, technology, and applied sciences (according to a 1981 Citation Classic of the Institute of Scientific Information). It introduced the broad scientific community to model identification using the methods of Akaike's criterion AIC. The AIC method is cited and applied in almost every area of physical and social science. The best way to learn about the seminal ideas of pioneering researchers is to read their original papers. This book reprints 29 papers of Akaike's more than 140 papers. This book of papers by Akaike is a tribute to his outstanding career and a service to provide students and researchers with access to Akaike's innovative and influential ideas and applications. To provide a commentary on the career of Akaike, the motivations of his ideas, and his many remarkable honors and prizes, this book reprints "A Conversation with Hirotugu Akaike" by David F. Findley and Emanuel Parzen, published in 1995 in the journal Statistical Science. This survey of Akaike's career provides each of us with a role model for how to have an impact on society by stimulating applied researchers to implement new statistical methods.

Bayesian Forecasting and Dynamic Models

Bayesian Forecasting and Dynamic Models PDF Author: Mike West
Publisher: Springer Science & Business Media
ISBN: 1475793650
Category : Mathematics
Languages : en
Pages : 720

Get Book Here

Book Description
In this book we are concerned with Bayesian learning and forecast ing in dynamic environments. We describe the structure and theory of classes of dynamic models, and their uses in Bayesian forecasting. The principles, models and methods of Bayesian forecasting have been developed extensively during the last twenty years. This devel opment has involved thorough investigation of mathematical and sta tistical aspects of forecasting models and related techniques. With this has come experience with application in a variety of areas in commercial and industrial, scientific and socio-economic fields. In deed much of the technical development has been driven by the needs of forecasting practitioners. As a result, there now exists a relatively complete statistical and mathematical framework, although much of this is either not properly documented or not easily accessible. Our primary goals in writing this book have been to present our view of this approach to modelling and forecasting, and to provide a rea sonably complete text for advanced university students and research workers. The text is primarily intended for advanced undergraduate and postgraduate students in statistics and mathematics. In line with this objective we present thorough discussion of mathematical and statistical features of Bayesian analyses of dynamic models, with illustrations, examples and exercises in each Chapter.

Smoothing Methods in Statistics

Smoothing Methods in Statistics PDF Author: Jeffrey S. Simonoff
Publisher: Springer Science & Business Media
ISBN: 1461240263
Category : Mathematics
Languages : en
Pages : 349

Get Book Here

Book Description
Focussing on applications, this book covers a very broad range, including simple and complex univariate and multivariate density estimation, nonparametric regression estimation, categorical data smoothing, and applications of smoothing to other areas of statistics. It will thus be of particular interest to data analysts, as arguments generally proceed from actual data rather than statistical theory, while the "Background Material" sections will interest statisticians studying the field. Over 750 references allow researchers to find the original sources for more details, and the "Computational Issues" sections provide sources for statistical software that use the methods discussed. Each chapter includes exercises with a heavily computational focus based upon the data sets used in the book, making it equally suitable as a textbook for a course in smoothing.