Parallel Programming with OpenACC

Parallel Programming with OpenACC PDF Author: Rob Farber
Publisher: Newnes
ISBN: 0124104592
Category : Computers
Languages : en
Pages : 328

Get Book Here

Book Description
Parallel Programming with OpenACC is a modern, practical guide to implementing dependable computing systems. The book explains how anyone can use OpenACC to quickly ramp-up application performance using high-level code directives called pragmas. The OpenACC directive-based programming model is designed to provide a simple, yet powerful, approach to accelerators without significant programming effort. Author Rob Farber, working with a team of expert contributors, demonstrates how to turn existing applications into portable GPU accelerated programs that demonstrate immediate speedups. The book also helps users get the most from the latest NVIDIA and AMD GPU plus multicore CPU architectures (and soon for Intel® Xeon PhiTM as well). Downloadable example codes provide hands-on OpenACC experience for common problems in scientific, commercial, big-data, and real-time systems. Topics include writing reusable code, asynchronous capabilities, using libraries, multicore clusters, and much more. Each chapter explains how a specific aspect of OpenACC technology fits, how it works, and the pitfalls to avoid. Throughout, the book demonstrates how the use of simple working examples that can be adapted to solve application needs. - Presents the simplest way to leverage GPUs to achieve application speedups - Shows how OpenACC works, including working examples that can be adapted for application needs - Allows readers to download source code and slides from the book's companion web page

Parallel Programming with OpenACC

Parallel Programming with OpenACC PDF Author: Rob Farber
Publisher: Newnes
ISBN: 0124104592
Category : Computers
Languages : en
Pages : 328

Get Book Here

Book Description
Parallel Programming with OpenACC is a modern, practical guide to implementing dependable computing systems. The book explains how anyone can use OpenACC to quickly ramp-up application performance using high-level code directives called pragmas. The OpenACC directive-based programming model is designed to provide a simple, yet powerful, approach to accelerators without significant programming effort. Author Rob Farber, working with a team of expert contributors, demonstrates how to turn existing applications into portable GPU accelerated programs that demonstrate immediate speedups. The book also helps users get the most from the latest NVIDIA and AMD GPU plus multicore CPU architectures (and soon for Intel® Xeon PhiTM as well). Downloadable example codes provide hands-on OpenACC experience for common problems in scientific, commercial, big-data, and real-time systems. Topics include writing reusable code, asynchronous capabilities, using libraries, multicore clusters, and much more. Each chapter explains how a specific aspect of OpenACC technology fits, how it works, and the pitfalls to avoid. Throughout, the book demonstrates how the use of simple working examples that can be adapted to solve application needs. - Presents the simplest way to leverage GPUs to achieve application speedups - Shows how OpenACC works, including working examples that can be adapted for application needs - Allows readers to download source code and slides from the book's companion web page

OpenACC for Programmers

OpenACC for Programmers PDF Author: Sunita Chandrasekaran
Publisher: Addison-Wesley Professional
ISBN: 0134694341
Category : Computers
Languages : en
Pages : 563

Get Book Here

Book Description
The Complete Guide to OpenACC for Massively Parallel Programming Scientists and technical professionals can use OpenACC to leverage the immense power of modern GPUs without the complexity traditionally associated with programming them. OpenACCTM for Programmers is one of the first comprehensive and practical overviews of OpenACC for massively parallel programming. This book integrates contributions from 19 leading parallel-programming experts from academia, public research organizations, and industry. The authors and editors explain each key concept behind OpenACC, demonstrate how to use essential OpenACC development tools, and thoroughly explore each OpenACC feature set. Throughout, you’ll find realistic examples, hands-on exercises, and case studies showcasing the efficient use of OpenACC language constructs. You’ll discover how OpenACC’s language constructs can be translated to maximize application performance, and how its standard interface can target multiple platforms via widely used programming languages. Each chapter builds on what you’ve already learned, helping you build practical mastery one step at a time, whether you’re a GPU programmer, scientist, engineer, or student. All example code and exercise solutions are available for download at GitHub. Discover how OpenACC makes scalable parallel programming easier and more practical Walk through the OpenACC spec and learn how OpenACC directive syntax is structured Get productive with OpenACC code editors, compilers, debuggers, and performance analysis tools Build your first real-world OpenACC programs Exploit loop-level parallelism in OpenACC, understand the levels of parallelism available, and maximize accuracy or performance Learn how OpenACC programs are compiled Master OpenACC programming best practices Overcome common performance, portability, and interoperability challenges Efficiently distribute tasks across multiple processors Register your product at informit.com/register for convenient access to downloads, updates, and/or corrections as they become available.

Programming Massively Parallel Processors

Programming Massively Parallel Processors PDF Author: David B. Kirk
Publisher: Newnes
ISBN: 0123914183
Category : Computers
Languages : en
Pages : 519

Get Book Here

Book Description
Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing

Euro-Par 2012 Parallel Processing

Euro-Par 2012 Parallel Processing PDF Author: Christos Kaklamanis
Publisher: Springer
ISBN: 9783642328190
Category : Computers
Languages : en
Pages : 960

Get Book Here

Book Description
This book constitutes the thoroughly refereed proceedings of the 18th International Conference, Euro-Par 2012, held in Rhodes Islands, Greece, in August 2012. The 75 revised full papers presented were carefully reviewed and selected from 228 submissions. The papers are organized in topical sections on support tools and environments; performance prediction and evaluation; scheduling and load balancing; high-performance architectures and compilers; parallel and distributed data management; grid, cluster and cloud computing; peer to peer computing; distributed systems and algorithms; parallel and distributed programming; parallel numerical algorithms; multicore and manycore programming; theory and algorithms for parallel computation; high performance network and communication; mobile and ubiquitous computing; high performance and scientific applications; GPU and accelerators computing.

Parallel Programming

Parallel Programming PDF Author: Bertil Schmidt
Publisher: Morgan Kaufmann
ISBN: 0128044861
Category : Computers
Languages : en
Pages : 418

Get Book Here

Book Description
Parallel Programming: Concepts and Practice provides an upper level introduction to parallel programming. In addition to covering general parallelism concepts, this text teaches practical programming skills for both shared memory and distributed memory architectures. The authors' open-source system for automated code evaluation provides easy access to parallel computing resources, making the book particularly suitable for classroom settings. - Covers parallel programming approaches for single computer nodes and HPC clusters: OpenMP, multithreading, SIMD vectorization, MPI, UPC++ - Contains numerous practical parallel programming exercises - Includes access to an automated code evaluation tool that enables students the opportunity to program in a web browser and receive immediate feedback on the result validity of their program - Features an example-based teaching of concept to enhance learning outcomes

Professional CUDA C Programming

Professional CUDA C Programming PDF Author: John Cheng
Publisher: John Wiley & Sons
ISBN: 1118739329
Category : Computers
Languages : en
Pages : 528

Get Book Here

Book Description
Break into the powerful world of parallel GPU programming with this down-to-earth, practical guide Designed for professionals across multiple industrial sectors, Professional CUDA C Programming presents CUDA -- a parallel computing platform and programming model designed to ease the development of GPU programming -- fundamentals in an easy-to-follow format, and teaches readers how to think in parallel and implement parallel algorithms on GPUs. Each chapter covers a specific topic, and includes workable examples that demonstrate the development process, allowing readers to explore both the "hard" and "soft" aspects of GPU programming. Computing architectures are experiencing a fundamental shift toward scalable parallel computing motivated by application requirements in industry and science. This book demonstrates the challenges of efficiently utilizing compute resources at peak performance, presents modern techniques for tackling these challenges, while increasing accessibility for professionals who are not necessarily parallel programming experts. The CUDA programming model and tools empower developers to write high-performance applications on a scalable, parallel computing platform: the GPU. However, CUDA itself can be difficult to learn without extensive programming experience. Recognized CUDA authorities John Cheng, Max Grossman, and Ty McKercher guide readers through essential GPU programming skills and best practices in Professional CUDA C Programming, including: CUDA Programming Model GPU Execution Model GPU Memory model Streams, Event and Concurrency Multi-GPU Programming CUDA Domain-Specific Libraries Profiling and Performance Tuning The book makes complex CUDA concepts easy to understand for anyone with knowledge of basic software development with exercises designed to be both readable and high-performance. For the professional seeking entrance to parallel computing and the high-performance computing community, Professional CUDA C Programming is an invaluable resource, with the most current information available on the market.

CUDA Programming

CUDA Programming PDF Author: Shane Cook
Publisher: Newnes
ISBN: 0124159338
Category : Computers
Languages : en
Pages : 592

Get Book Here

Book Description
'CUDA Programming' offers a detailed guide to CUDA with a grounding in parallel fundamentals. It starts by introducing CUDA and bringing you up to speed on GPU parallelism and hardware, then delving into CUDA installation.

Parallel Programming for Modern High Performance Computing Systems

Parallel Programming for Modern High Performance Computing Systems PDF Author: Pawel Czarnul
Publisher: CRC Press
ISBN: 1351385801
Category : Business & Economics
Languages : en
Pages : 330

Get Book Here

Book Description
In view of the growing presence and popularity of multicore and manycore processors, accelerators, and coprocessors, as well as clusters using such computing devices, the development of efficient parallel applications has become a key challenge to be able to exploit the performance of such systems. This book covers the scope of parallel programming for modern high performance computing systems. It first discusses selected and popular state-of-the-art computing devices and systems available today, These include multicore CPUs, manycore (co)processors, such as Intel Xeon Phi, accelerators, such as GPUs, and clusters, as well as programming models supported on these platforms. It next introduces parallelization through important programming paradigms, such as master-slave, geometric Single Program Multiple Data (SPMD) and divide-and-conquer. The practical and useful elements of the most popular and important APIs for programming parallel HPC systems are discussed, including MPI, OpenMP, Pthreads, CUDA, OpenCL, and OpenACC. It also demonstrates, through selected code listings, how selected APIs can be used to implement important programming paradigms. Furthermore, it shows how the codes can be compiled and executed in a Linux environment. The book also presents hybrid codes that integrate selected APIs for potentially multi-level parallelization and utilization of heterogeneous resources, and it shows how to use modern elements of these APIs. Selected optimization techniques are also included, such as overlapping communication and computations implemented using various APIs. Features: Discusses the popular and currently available computing devices and cluster systems Includes typical paradigms used in parallel programs Explores popular APIs for programming parallel applications Provides code templates that can be used for implementation of paradigms Provides hybrid code examples allowing multi-level parallelization Covers the optimization of parallel programs

Parallel and High Performance Computing

Parallel and High Performance Computing PDF Author: Robert Robey
Publisher: Simon and Schuster
ISBN: 1638350388
Category : Computers
Languages : en
Pages : 702

Get Book Here

Book Description
Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code

Supercomputing Frontiers

Supercomputing Frontiers PDF Author: Rio Yokota
Publisher: Springer
ISBN: 3319699539
Category : Computers
Languages : en
Pages : 301

Get Book Here

Book Description
It constitutes the refereed proceedings of the 4th Asian Supercomputing Conference, SCFA 2018, held in Singapore in March 2018. Supercomputing Frontiers will be rebranded as Supercomputing Frontiers Asia (SCFA), which serves as the technical programme for SCA18. The technical programme for SCA18 consists of four tracks: Application, Algorithms & Libraries Programming System Software Architecture, Network/Communications & Management Data, Storage & Visualisation The 20 papers presented in this volume were carefully reviewed nd selected from 60 submissions.