Author: Robert Schaefer
Publisher: Springer Science & Business Media
ISBN: 3642158706
Category : Computers
Languages : en
Pages : 577
Book Description
This book constitutes the refereed proceedings of the 11th International Conference on Parallel Problem Solving from Nature - PPSN XI, held in Kraków, Poland, in September 2010. The 131 revised full papers were carefully reviewed and selected from 232 submissions. The conference covers a wide range of topics, from evolutionary computation to swarm intelligence, from bio-inspired computing to real world applications. Machine learning and mathematical games supported by evolutionary algorithms as well as memetic, agent-oriented systems are also represented.
Parallel Problem Solving from Nature, PPSN XI
Author: Robert Schaefer
Publisher: Springer Science & Business Media
ISBN: 3642158706
Category : Computers
Languages : en
Pages : 577
Book Description
This book constitutes the refereed proceedings of the 11th International Conference on Parallel Problem Solving from Nature - PPSN XI, held in Kraków, Poland, in September 2010. The 131 revised full papers were carefully reviewed and selected from 232 submissions. The conference covers a wide range of topics, from evolutionary computation to swarm intelligence, from bio-inspired computing to real world applications. Machine learning and mathematical games supported by evolutionary algorithms as well as memetic, agent-oriented systems are also represented.
Publisher: Springer Science & Business Media
ISBN: 3642158706
Category : Computers
Languages : en
Pages : 577
Book Description
This book constitutes the refereed proceedings of the 11th International Conference on Parallel Problem Solving from Nature - PPSN XI, held in Kraków, Poland, in September 2010. The 131 revised full papers were carefully reviewed and selected from 232 submissions. The conference covers a wide range of topics, from evolutionary computation to swarm intelligence, from bio-inspired computing to real world applications. Machine learning and mathematical games supported by evolutionary algorithms as well as memetic, agent-oriented systems are also represented.
Parallel Problem Solving from Nature - PPSN IX
Author: Thomas Philip Runarsson
Publisher: Springer
ISBN: 3540389911
Category : Computers
Languages : en
Pages : 1079
Book Description
This book constitutes the refereed proceedings of the 9th International Conference on Parallel Problem Solving from Nature, PPSN 2006. The book presents 106 revised full papers covering a wide range of topics, from evolutionary computation to swarm intelligence and bio-inspired computing to real-world applications. These are organized in topical sections on theory, new algorithms, applications, multi-objective optimization, evolutionary learning, as well as representations, operators, and empirical evaluation.
Publisher: Springer
ISBN: 3540389911
Category : Computers
Languages : en
Pages : 1079
Book Description
This book constitutes the refereed proceedings of the 9th International Conference on Parallel Problem Solving from Nature, PPSN 2006. The book presents 106 revised full papers covering a wide range of topics, from evolutionary computation to swarm intelligence and bio-inspired computing to real-world applications. These are organized in topical sections on theory, new algorithms, applications, multi-objective optimization, evolutionary learning, as well as representations, operators, and empirical evaluation.
Parallel Problem Solving from Nature - PPSN VIII
Author: Xin Yao
Publisher: Springer Science & Business Media
ISBN: 3540230920
Category : Computers
Languages : en
Pages : 1204
Book Description
This book constitutes the refereed proceedings of the 8th International Conference on Parallel Problem Solving from Nature, PPSN 2004, held in Birmingham, UK, in September 2004. The 119 revised full papers presented were carefully reviewed and selected from 358 submissions. The papers address all current issues in biologically inspired computing; they are organized in topical sections on theoretical and foundational issues, new algorithms, applications, multi-objective optimization, co-evolution, robotics and multi-agent systems, and learning classifier systems and data mining.
Publisher: Springer Science & Business Media
ISBN: 3540230920
Category : Computers
Languages : en
Pages : 1204
Book Description
This book constitutes the refereed proceedings of the 8th International Conference on Parallel Problem Solving from Nature, PPSN 2004, held in Birmingham, UK, in September 2004. The 119 revised full papers presented were carefully reviewed and selected from 358 submissions. The papers address all current issues in biologically inspired computing; they are organized in topical sections on theoretical and foundational issues, new algorithms, applications, multi-objective optimization, co-evolution, robotics and multi-agent systems, and learning classifier systems and data mining.
Parallel Problem Solving from Nature-PPSN VI
Author: Marc Schoenauer
Publisher: Springer Science & Business Media
ISBN: 3540410562
Category : Computers
Languages : en
Pages : 920
Book Description
This book constitutes the refereed proceedings of the 6th International Conference on Parallel Problem Solving from Nature, PPSN VI, held in Paris, France in September 2000. The 87 revised full papers presented together with two invited papers were carefully reviewed and selected from 168 submissions. The presentations are organized in topical sections on analysis and theory of evolutionary algorithms, genetic programming, scheduling, representations and operators, co-evolution, constraint handling techniques, noisy and non-stationary environments, combinatorial optimization, applications, machine learning and classifier systems, new algorithms and metaphors, and multiobjective optimization.
Publisher: Springer Science & Business Media
ISBN: 3540410562
Category : Computers
Languages : en
Pages : 920
Book Description
This book constitutes the refereed proceedings of the 6th International Conference on Parallel Problem Solving from Nature, PPSN VI, held in Paris, France in September 2000. The 87 revised full papers presented together with two invited papers were carefully reviewed and selected from 168 submissions. The presentations are organized in topical sections on analysis and theory of evolutionary algorithms, genetic programming, scheduling, representations and operators, co-evolution, constraint handling techniques, noisy and non-stationary environments, combinatorial optimization, applications, machine learning and classifier systems, new algorithms and metaphors, and multiobjective optimization.
Nature-Inspired Computation in Engineering
Author: Xin-She Yang
Publisher: Springer
ISBN: 3319302353
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
This timely review book summarizes the state-of-the-art developments in nature-inspired optimization algorithms and their applications in engineering. Algorithms and topics include the overview and history of nature-inspired algorithms, discrete firefly algorithm, discrete cuckoo search, plant propagation algorithm, parameter-free bat algorithm, gravitational search, biogeography-based algorithm, differential evolution, particle swarm optimization and others. Applications include vehicle routing, swarming robots, discrete and combinatorial optimization, clustering of wireless sensor networks, cell formation, economic load dispatch, metamodeling, surrogated-assisted cooperative co-evolution, data fitting and reverse engineering as well as other case studies in engineering. This book will be an ideal reference for researchers, lecturers, graduates and engineers who are interested in nature-inspired computation, artificial intelligence and computational intelligence. It can also serve as a reference for relevant courses in computer science, artificial intelligence and machine learning, natural computation, engineering optimization and data mining.
Publisher: Springer
ISBN: 3319302353
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
This timely review book summarizes the state-of-the-art developments in nature-inspired optimization algorithms and their applications in engineering. Algorithms and topics include the overview and history of nature-inspired algorithms, discrete firefly algorithm, discrete cuckoo search, plant propagation algorithm, parameter-free bat algorithm, gravitational search, biogeography-based algorithm, differential evolution, particle swarm optimization and others. Applications include vehicle routing, swarming robots, discrete and combinatorial optimization, clustering of wireless sensor networks, cell formation, economic load dispatch, metamodeling, surrogated-assisted cooperative co-evolution, data fitting and reverse engineering as well as other case studies in engineering. This book will be an ideal reference for researchers, lecturers, graduates and engineers who are interested in nature-inspired computation, artificial intelligence and computational intelligence. It can also serve as a reference for relevant courses in computer science, artificial intelligence and machine learning, natural computation, engineering optimization and data mining.
Analyzing Evolutionary Algorithms
Author: Thomas Jansen
Publisher: Springer Science & Business Media
ISBN: 364217339X
Category : Computers
Languages : en
Pages : 264
Book Description
Evolutionary algorithms is a class of randomized heuristics inspired by natural evolution. They are applied in many different contexts, in particular in optimization, and analysis of such algorithms has seen tremendous advances in recent years. In this book the author provides an introduction to the methods used to analyze evolutionary algorithms and other randomized search heuristics. He starts with an algorithmic and modular perspective and gives guidelines for the design of evolutionary algorithms. He then places the approach in the broader research context with a chapter on theoretical perspectives. By adopting a complexity-theoretical perspective, he derives general limitations for black-box optimization, yielding lower bounds on the performance of evolutionary algorithms, and then develops general methods for deriving upper and lower bounds step by step. This main part is followed by a chapter covering practical applications of these methods. The notational and mathematical basics are covered in an appendix, the results presented are derived in detail, and each chapter ends with detailed comments and pointers to further reading. So the book is a useful reference for both graduate students and researchers engaged with the theoretical analysis of such algorithms.
Publisher: Springer Science & Business Media
ISBN: 364217339X
Category : Computers
Languages : en
Pages : 264
Book Description
Evolutionary algorithms is a class of randomized heuristics inspired by natural evolution. They are applied in many different contexts, in particular in optimization, and analysis of such algorithms has seen tremendous advances in recent years. In this book the author provides an introduction to the methods used to analyze evolutionary algorithms and other randomized search heuristics. He starts with an algorithmic and modular perspective and gives guidelines for the design of evolutionary algorithms. He then places the approach in the broader research context with a chapter on theoretical perspectives. By adopting a complexity-theoretical perspective, he derives general limitations for black-box optimization, yielding lower bounds on the performance of evolutionary algorithms, and then develops general methods for deriving upper and lower bounds step by step. This main part is followed by a chapter covering practical applications of these methods. The notational and mathematical basics are covered in an appendix, the results presented are derived in detail, and each chapter ends with detailed comments and pointers to further reading. So the book is a useful reference for both graduate students and researchers engaged with the theoretical analysis of such algorithms.
Parallel Problem Solving from Nature – PPSN XVI
Author: Thomas Bäck
Publisher: Springer Nature
ISBN: 3030581128
Category : Computers
Languages : en
Pages : 753
Book Description
This two-volume set LNCS 12269 and LNCS 12270 constitutes the refereed proceedings of the 16th International Conference on Parallel Problem Solving from Nature, PPSN 2020, held in Leiden, The Netherlands, in September 2020. The 99 revised full papers were carefully reviewed and selected from 268 submissions. The topics cover classical subjects such as automated algorithm selection and configuration; Bayesian- and surrogate-assisted optimization; benchmarking and performance measures; combinatorial optimization; connection between nature-inspired optimization and artificial intelligence; genetic and evolutionary algorithms; genetic programming; landscape analysis; multiobjective optimization; real-world applications; reinforcement learning; and theoretical aspects of nature-inspired optimization.
Publisher: Springer Nature
ISBN: 3030581128
Category : Computers
Languages : en
Pages : 753
Book Description
This two-volume set LNCS 12269 and LNCS 12270 constitutes the refereed proceedings of the 16th International Conference on Parallel Problem Solving from Nature, PPSN 2020, held in Leiden, The Netherlands, in September 2020. The 99 revised full papers were carefully reviewed and selected from 268 submissions. The topics cover classical subjects such as automated algorithm selection and configuration; Bayesian- and surrogate-assisted optimization; benchmarking and performance measures; combinatorial optimization; connection between nature-inspired optimization and artificial intelligence; genetic and evolutionary algorithms; genetic programming; landscape analysis; multiobjective optimization; real-world applications; reinforcement learning; and theoretical aspects of nature-inspired optimization.
Genetic Programming Theory and Practice XI
Author: Rick Riolo
Publisher: Springer Science & Business Media
ISBN: 1493903756
Category : Computers
Languages : en
Pages : 234
Book Description
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: evolutionary constraints, relaxation of selection mechanisms, diversity preservation strategies, flexing fitness evaluation, evolution in dynamic environments, multi-objective and multi-modal selection, foundations of evolvability, evolvable and adaptive evolutionary operators, foundation of injecting expert knowledge in evolutionary search, analysis of problem difficulty and required GP algorithm complexity, foundations in running GP on the cloud – communication, cooperation, flexible implementation, and ensemble methods. Additional focal points for GP symbolic regression are: (1) The need to guarantee convergence to solutions in the function discovery mode; (2) Issues on model validation; (3) The need for model analysis workflows for insight generation based on generated GP solutions – model exploration, visualization, variable selection, dimensionality analysis; (4) Issues in combining different types of data. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
Publisher: Springer Science & Business Media
ISBN: 1493903756
Category : Computers
Languages : en
Pages : 234
Book Description
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: evolutionary constraints, relaxation of selection mechanisms, diversity preservation strategies, flexing fitness evaluation, evolution in dynamic environments, multi-objective and multi-modal selection, foundations of evolvability, evolvable and adaptive evolutionary operators, foundation of injecting expert knowledge in evolutionary search, analysis of problem difficulty and required GP algorithm complexity, foundations in running GP on the cloud – communication, cooperation, flexible implementation, and ensemble methods. Additional focal points for GP symbolic regression are: (1) The need to guarantee convergence to solutions in the function discovery mode; (2) Issues on model validation; (3) The need for model analysis workflows for insight generation based on generated GP solutions – model exploration, visualization, variable selection, dimensionality analysis; (4) Issues in combining different types of data. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
Theory and Principled Methods for the Design of Metaheuristics
Author: Yossi Borenstein
Publisher: Springer Science & Business Media
ISBN: 3642332064
Category : Computers
Languages : en
Pages : 287
Book Description
Metaheuristics, and evolutionary algorithms in particular, are known to provide efficient, adaptable solutions for many real-world problems, but the often informal way in which they are defined and applied has led to misconceptions, and even successful applications are sometimes the outcome of trial and error. Ideally, theoretical studies should explain when and why metaheuristics work, but the challenge is huge: mathematical analysis requires significant effort even for simple scenarios and real-life problems are usually quite complex. In this book the editors establish a bridge between theory and practice, presenting principled methods that incorporate problem knowledge in evolutionary algorithms and other metaheuristics. The book consists of 11 chapters dealing with the following topics: theoretical results that show what is not possible, an assessment of unsuccessful lines of empirical research; methods for rigorously defining the appropriate scope of problems while acknowledging the compromise between the class of problems to which a search algorithm is applied and its overall expected performance; the top-down principled design of search algorithms, in particular showing that it is possible to design algorithms that are provably good for some rigorously defined classes; and, finally, principled practice, that is reasoned and systematic approaches to setting up experiments, metaheuristic adaptation to specific problems, and setting parameters. With contributions by some of the leading researchers in this domain, this book will be of significant value to scientists, practitioners, and graduate students in the areas of evolutionary computing, metaheuristics, and computational intelligence.
Publisher: Springer Science & Business Media
ISBN: 3642332064
Category : Computers
Languages : en
Pages : 287
Book Description
Metaheuristics, and evolutionary algorithms in particular, are known to provide efficient, adaptable solutions for many real-world problems, but the often informal way in which they are defined and applied has led to misconceptions, and even successful applications are sometimes the outcome of trial and error. Ideally, theoretical studies should explain when and why metaheuristics work, but the challenge is huge: mathematical analysis requires significant effort even for simple scenarios and real-life problems are usually quite complex. In this book the editors establish a bridge between theory and practice, presenting principled methods that incorporate problem knowledge in evolutionary algorithms and other metaheuristics. The book consists of 11 chapters dealing with the following topics: theoretical results that show what is not possible, an assessment of unsuccessful lines of empirical research; methods for rigorously defining the appropriate scope of problems while acknowledging the compromise between the class of problems to which a search algorithm is applied and its overall expected performance; the top-down principled design of search algorithms, in particular showing that it is possible to design algorithms that are provably good for some rigorously defined classes; and, finally, principled practice, that is reasoned and systematic approaches to setting up experiments, metaheuristic adaptation to specific problems, and setting parameters. With contributions by some of the leading researchers in this domain, this book will be of significant value to scientists, practitioners, and graduate students in the areas of evolutionary computing, metaheuristics, and computational intelligence.
Multimodal Optimization by Means of Evolutionary Algorithms
Author: Mike Preuss
Publisher: Springer
ISBN: 3319074075
Category : Computers
Languages : en
Pages : 206
Book Description
This book offers the first comprehensive taxonomy for multimodal optimization algorithms, work with its root in topics such as niching, parallel evolutionary algorithms, and global optimization. The author explains niching in evolutionary algorithms and its benefits; he examines their suitability for use as diagnostic tools for experimental analysis, especially for detecting problem (type) properties; and he measures and compares the performances of niching and canonical EAs using different benchmark test problem sets. His work consolidates the recent successes in this domain, presenting and explaining use cases, algorithms, and performance measures, with a focus throughout on the goals of the optimization processes and a deep understanding of the algorithms used. The book will be useful for researchers and practitioners in the area of computational intelligence, particularly those engaged with heuristic search, multimodal optimization, evolutionary computing, and experimental analysis.
Publisher: Springer
ISBN: 3319074075
Category : Computers
Languages : en
Pages : 206
Book Description
This book offers the first comprehensive taxonomy for multimodal optimization algorithms, work with its root in topics such as niching, parallel evolutionary algorithms, and global optimization. The author explains niching in evolutionary algorithms and its benefits; he examines their suitability for use as diagnostic tools for experimental analysis, especially for detecting problem (type) properties; and he measures and compares the performances of niching and canonical EAs using different benchmark test problem sets. His work consolidates the recent successes in this domain, presenting and explaining use cases, algorithms, and performance measures, with a focus throughout on the goals of the optimization processes and a deep understanding of the algorithms used. The book will be useful for researchers and practitioners in the area of computational intelligence, particularly those engaged with heuristic search, multimodal optimization, evolutionary computing, and experimental analysis.