Author: Marc Schoenauer
Publisher: Springer Science & Business Media
ISBN: 3540410562
Category : Computers
Languages : en
Pages : 920
Book Description
This book constitutes the refereed proceedings of the 6th International Conference on Parallel Problem Solving from Nature, PPSN VI, held in Paris, France in September 2000. The 87 revised full papers presented together with two invited papers were carefully reviewed and selected from 168 submissions. The presentations are organized in topical sections on analysis and theory of evolutionary algorithms, genetic programming, scheduling, representations and operators, co-evolution, constraint handling techniques, noisy and non-stationary environments, combinatorial optimization, applications, machine learning and classifier systems, new algorithms and metaphors, and multiobjective optimization.
Parallel Problem Solving from Nature-PPSN VI
Author: Marc Schoenauer
Publisher: Springer Science & Business Media
ISBN: 3540410562
Category : Computers
Languages : en
Pages : 920
Book Description
This book constitutes the refereed proceedings of the 6th International Conference on Parallel Problem Solving from Nature, PPSN VI, held in Paris, France in September 2000. The 87 revised full papers presented together with two invited papers were carefully reviewed and selected from 168 submissions. The presentations are organized in topical sections on analysis and theory of evolutionary algorithms, genetic programming, scheduling, representations and operators, co-evolution, constraint handling techniques, noisy and non-stationary environments, combinatorial optimization, applications, machine learning and classifier systems, new algorithms and metaphors, and multiobjective optimization.
Publisher: Springer Science & Business Media
ISBN: 3540410562
Category : Computers
Languages : en
Pages : 920
Book Description
This book constitutes the refereed proceedings of the 6th International Conference on Parallel Problem Solving from Nature, PPSN VI, held in Paris, France in September 2000. The 87 revised full papers presented together with two invited papers were carefully reviewed and selected from 168 submissions. The presentations are organized in topical sections on analysis and theory of evolutionary algorithms, genetic programming, scheduling, representations and operators, co-evolution, constraint handling techniques, noisy and non-stationary environments, combinatorial optimization, applications, machine learning and classifier systems, new algorithms and metaphors, and multiobjective optimization.
Parallel Problem Solving from Nature - PPSN IX
Author: Thomas Philip Runarsson
Publisher: Springer
ISBN: 3540389911
Category : Computers
Languages : en
Pages : 1079
Book Description
This book constitutes the refereed proceedings of the 9th International Conference on Parallel Problem Solving from Nature, PPSN 2006. The book presents 106 revised full papers covering a wide range of topics, from evolutionary computation to swarm intelligence and bio-inspired computing to real-world applications. These are organized in topical sections on theory, new algorithms, applications, multi-objective optimization, evolutionary learning, as well as representations, operators, and empirical evaluation.
Publisher: Springer
ISBN: 3540389911
Category : Computers
Languages : en
Pages : 1079
Book Description
This book constitutes the refereed proceedings of the 9th International Conference on Parallel Problem Solving from Nature, PPSN 2006. The book presents 106 revised full papers covering a wide range of topics, from evolutionary computation to swarm intelligence and bio-inspired computing to real-world applications. These are organized in topical sections on theory, new algorithms, applications, multi-objective optimization, evolutionary learning, as well as representations, operators, and empirical evaluation.
Parallel Problem Solving from Nature – PPSN XVI
Author: Thomas Bäck
Publisher: Springer Nature
ISBN: 3030581128
Category : Computers
Languages : en
Pages : 753
Book Description
This two-volume set LNCS 12269 and LNCS 12270 constitutes the refereed proceedings of the 16th International Conference on Parallel Problem Solving from Nature, PPSN 2020, held in Leiden, The Netherlands, in September 2020. The 99 revised full papers were carefully reviewed and selected from 268 submissions. The topics cover classical subjects such as automated algorithm selection and configuration; Bayesian- and surrogate-assisted optimization; benchmarking and performance measures; combinatorial optimization; connection between nature-inspired optimization and artificial intelligence; genetic and evolutionary algorithms; genetic programming; landscape analysis; multiobjective optimization; real-world applications; reinforcement learning; and theoretical aspects of nature-inspired optimization.
Publisher: Springer Nature
ISBN: 3030581128
Category : Computers
Languages : en
Pages : 753
Book Description
This two-volume set LNCS 12269 and LNCS 12270 constitutes the refereed proceedings of the 16th International Conference on Parallel Problem Solving from Nature, PPSN 2020, held in Leiden, The Netherlands, in September 2020. The 99 revised full papers were carefully reviewed and selected from 268 submissions. The topics cover classical subjects such as automated algorithm selection and configuration; Bayesian- and surrogate-assisted optimization; benchmarking and performance measures; combinatorial optimization; connection between nature-inspired optimization and artificial intelligence; genetic and evolutionary algorithms; genetic programming; landscape analysis; multiobjective optimization; real-world applications; reinforcement learning; and theoretical aspects of nature-inspired optimization.
Multiobjective Problem Solving from Nature
Author: Joshua Knowles
Publisher: Springer Science & Business Media
ISBN: 3540729631
Category : Computers
Languages : en
Pages : 413
Book Description
This text examines how multiobjective evolutionary algorithms and related techniques can be used to solve problems, particularly in the disciplines of science and engineering. Contributions by leading researchers show how the concept of multiobjective optimization can be used to reformulate and resolve problems in areas such as constrained optimization, co-evolution, classification, inverse modeling, and design.
Publisher: Springer Science & Business Media
ISBN: 3540729631
Category : Computers
Languages : en
Pages : 413
Book Description
This text examines how multiobjective evolutionary algorithms and related techniques can be used to solve problems, particularly in the disciplines of science and engineering. Contributions by leading researchers show how the concept of multiobjective optimization can be used to reformulate and resolve problems in areas such as constrained optimization, co-evolution, classification, inverse modeling, and design.
Evolutionary Multi-Criterion Optimization
Author: Eckart Zitzler
Publisher: Springer
ISBN: 3540447199
Category : Mathematics
Languages : en
Pages : 725
Book Description
This book constitutes the refereed proceedings of the First International Conference on Multi-Criterion Optimization, EMO 2001, held in Zurich, Switzerland in March 2001. The 45 revised full papers presented were carefully reviewed and selected from a total of 87 submissions. Also included are two tutorial surveys and two invited papers. The book is organized in topical sections on algorithm improvements, performance assessment and comparison, constraint handling and problem decomposition, uncertainty and noise, hybrid and alternative methods, scheduling, and applications of multi-objective optimization in a variety of fields.
Publisher: Springer
ISBN: 3540447199
Category : Mathematics
Languages : en
Pages : 725
Book Description
This book constitutes the refereed proceedings of the First International Conference on Multi-Criterion Optimization, EMO 2001, held in Zurich, Switzerland in March 2001. The 45 revised full papers presented were carefully reviewed and selected from a total of 87 submissions. Also included are two tutorial surveys and two invited papers. The book is organized in topical sections on algorithm improvements, performance assessment and comparison, constraint handling and problem decomposition, uncertainty and noise, hybrid and alternative methods, scheduling, and applications of multi-objective optimization in a variety of fields.
Ant Colony Optimization and Swarm Intelligence
Author: Marco Dorigo
Publisher: Springer
ISBN: 3540286462
Category : Mathematics
Languages : en
Pages : 445
Book Description
1 With its fourth edition, the ANTS series of workshops has changed its name. The original"ANTS-From Ant Colonies to Artificial Ants: International Workshop on Ant Algorithms" has become "ANTS - International Workshop on Ant Colony Optimization and Swarm Intelligence". This change is mainly due to the following reasons. First, the term "ant algorithms" was slower in spreading in the research community than the term "swarm intelligence", while at the same time research inso-called swarm robotics was the subject of increasing activity: it was therefore an obvious choice to substitute the term ant algorithms with the more accepted and used term swarm intelligence. Second, although swarm intelligence research has undoubtedly produced a 2 number of interesting and promising research directions, we think it is fair to say that its most successful strand is the one known as "ant colony optimization". Ant colony optimization, first introduced in the early 1990s as a novel tool for the approximate solution of discrete optimization problems, has recently seen an explosion in the number of its applications, both to academic and real-world problems, and is currently being extended to the realm of continuous optimization (a few papers on this subject being published in these proceedings). It is therefore a reasonable choice to have the term ant colony optimization as part of the workshop name
Publisher: Springer
ISBN: 3540286462
Category : Mathematics
Languages : en
Pages : 445
Book Description
1 With its fourth edition, the ANTS series of workshops has changed its name. The original"ANTS-From Ant Colonies to Artificial Ants: International Workshop on Ant Algorithms" has become "ANTS - International Workshop on Ant Colony Optimization and Swarm Intelligence". This change is mainly due to the following reasons. First, the term "ant algorithms" was slower in spreading in the research community than the term "swarm intelligence", while at the same time research inso-called swarm robotics was the subject of increasing activity: it was therefore an obvious choice to substitute the term ant algorithms with the more accepted and used term swarm intelligence. Second, although swarm intelligence research has undoubtedly produced a 2 number of interesting and promising research directions, we think it is fair to say that its most successful strand is the one known as "ant colony optimization". Ant colony optimization, first introduced in the early 1990s as a novel tool for the approximate solution of discrete optimization problems, has recently seen an explosion in the number of its applications, both to academic and real-world problems, and is currently being extended to the realm of continuous optimization (a few papers on this subject being published in these proceedings). It is therefore a reasonable choice to have the term ant colony optimization as part of the workshop name
Evolutionary Optimization Algorithms
Author: Dan Simon
Publisher: John Wiley & Sons
ISBN: 1118659503
Category : Mathematics
Languages : en
Pages : 776
Book Description
A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.
Publisher: John Wiley & Sons
ISBN: 1118659503
Category : Mathematics
Languages : en
Pages : 776
Book Description
A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.
Foundations of Genetic Algorithms
Author: Christopher R. Stephens
Publisher: Springer
ISBN: 3540734821
Category : Computers
Languages : en
Pages : 221
Book Description
Readers will find here a fascinating text that is the thoroughly refereed post-proceedings of the 9th Workshop on the Foundations of Genetic Algorithms, FOGA 2007, held in Mexico City in January 2007. The 11 revised full papers presented were carefully reviewed and selected during two rounds of reviewing and improvement from 22 submissions. The papers address all current topics in the field of theoretical evolutionary computation and also depict the continuing growth in interactions with other fields such as mathematics, physics, and biology
Publisher: Springer
ISBN: 3540734821
Category : Computers
Languages : en
Pages : 221
Book Description
Readers will find here a fascinating text that is the thoroughly refereed post-proceedings of the 9th Workshop on the Foundations of Genetic Algorithms, FOGA 2007, held in Mexico City in January 2007. The 11 revised full papers presented were carefully reviewed and selected during two rounds of reviewing and improvement from 22 submissions. The papers address all current topics in the field of theoretical evolutionary computation and also depict the continuing growth in interactions with other fields such as mathematics, physics, and biology
Towards a New Evolutionary Computation
Author: Jose A. Lozano
Publisher: Springer Science & Business Media
ISBN: 3540290060
Category : Computers
Languages : en
Pages : 306
Book Description
Estimation of Distribution Algorithms (EDAs) are a set of algorithms in the Evolutionary Computation (EC) field characterized by the use of explicit probability distributions in optimization. Contrarily to other EC techniques such as the broadly known Genetic Algorithms (GAs) in EDAs, the crossover and mutation operators are substituted by the sampling of a distribution previously learnt from the selected individuals. EDAs have experienced a high development that has transformed them into an established discipline within the EC field. This book attracts the interest of new researchers in the EC field as well as in other optimization disciplines, and that it becomes a reference for all of us working on this topic. The twelve chapters of this book can be divided into those that endeavor to set a sound theoretical basis for EDAs, those that broaden the methodology of EDAs and finally those that have an applied objective.
Publisher: Springer Science & Business Media
ISBN: 3540290060
Category : Computers
Languages : en
Pages : 306
Book Description
Estimation of Distribution Algorithms (EDAs) are a set of algorithms in the Evolutionary Computation (EC) field characterized by the use of explicit probability distributions in optimization. Contrarily to other EC techniques such as the broadly known Genetic Algorithms (GAs) in EDAs, the crossover and mutation operators are substituted by the sampling of a distribution previously learnt from the selected individuals. EDAs have experienced a high development that has transformed them into an established discipline within the EC field. This book attracts the interest of new researchers in the EC field as well as in other optimization disciplines, and that it becomes a reference for all of us working on this topic. The twelve chapters of this book can be divided into those that endeavor to set a sound theoretical basis for EDAs, those that broaden the methodology of EDAs and finally those that have an applied objective.
Knowledge Incorporation in Evolutionary Computation
Author: Yaochu Jin
Publisher: Springer
ISBN: 3540445110
Category : Mathematics
Languages : en
Pages : 543
Book Description
Incorporation of a priori knowledge, such as expert knowledge, meta-heuristics and human preferences, as well as domain knowledge acquired during evolu tionary search, into evolutionary algorithms has received increasing interest in the recent years. It has been shown from various motivations that knowl edge incorporation into evolutionary search is able to significantly improve search efficiency. However, results on knowledge incorporation in evolution ary computation have been scattered in a wide range of research areas and a systematic handling of this important topic in evolutionary computation still lacks. This edited book is a first attempt to put together the state-of-art and re cent advances on knowledge incorporation in evolutionary computation within a unified framework. Existing methods for knowledge incorporation are di vided into the following five categories according to the functionality of the incorporated knowledge in the evolutionary algorithms. 1. Knowledge incorporation in representation, population initialization, - combination and mutation. 2. Knowledge incorporation in selection and reproduction. 3. Knowledge incorporation in fitness evaluations. 4. Knowledge incorporation through life-time learning and human-computer interactions. 5. Incorporation of human preferences in multi-objective evolutionary com putation. The intended readers of this book are graduate students, researchers and practitioners in all fields of science and engineering who are interested in evolutionary computation. The book is divided into six parts. Part I contains one introductory chapter titled "A selected introduction to evolutionary computation" by Yao, which presents a concise but insightful introduction to evolutionary computation.
Publisher: Springer
ISBN: 3540445110
Category : Mathematics
Languages : en
Pages : 543
Book Description
Incorporation of a priori knowledge, such as expert knowledge, meta-heuristics and human preferences, as well as domain knowledge acquired during evolu tionary search, into evolutionary algorithms has received increasing interest in the recent years. It has been shown from various motivations that knowl edge incorporation into evolutionary search is able to significantly improve search efficiency. However, results on knowledge incorporation in evolution ary computation have been scattered in a wide range of research areas and a systematic handling of this important topic in evolutionary computation still lacks. This edited book is a first attempt to put together the state-of-art and re cent advances on knowledge incorporation in evolutionary computation within a unified framework. Existing methods for knowledge incorporation are di vided into the following five categories according to the functionality of the incorporated knowledge in the evolutionary algorithms. 1. Knowledge incorporation in representation, population initialization, - combination and mutation. 2. Knowledge incorporation in selection and reproduction. 3. Knowledge incorporation in fitness evaluations. 4. Knowledge incorporation through life-time learning and human-computer interactions. 5. Incorporation of human preferences in multi-objective evolutionary com putation. The intended readers of this book are graduate students, researchers and practitioners in all fields of science and engineering who are interested in evolutionary computation. The book is divided into six parts. Part I contains one introductory chapter titled "A selected introduction to evolutionary computation" by Yao, which presents a concise but insightful introduction to evolutionary computation.