Author: Seyed H Roosta
Publisher: Springer Science & Business Media
ISBN: 1461212200
Category : Computers
Languages : en
Pages : 579
Book Description
Motivation It is now possible to build powerful single-processor and multiprocessor systems and use them efficiently for data processing, which has seen an explosive ex pansion in many areas of computer science and engineering. One approach to meeting the performance requirements of the applications has been to utilize the most powerful single-processor system that is available. When such a system does not provide the performance requirements, pipelined and parallel process ing structures can be employed. The concept of parallel processing is a depar ture from sequential processing. In sequential computation one processor is in volved and performs one operation at a time. On the other hand, in parallel computation several processors cooperate to solve a problem, which reduces computing time because several operations can be carried out simultaneously. Using several processors that work together on a given computation illustrates a new paradigm in computer problem solving which is completely different from sequential processing. From the practical point of view, this provides sufficient justification to investigate the concept of parallel processing and related issues, such as parallel algorithms. Parallel processing involves utilizing several factors, such as parallel architectures, parallel algorithms, parallel programming lan guages and performance analysis, which are strongly interrelated. In general, four steps are involved in performing a computational problem in parallel. The first step is to understand the nature of computations in the specific application domain.
Parallel Processing and Parallel Algorithms
Author: Seyed H Roosta
Publisher: Springer Science & Business Media
ISBN: 1461212200
Category : Computers
Languages : en
Pages : 579
Book Description
Motivation It is now possible to build powerful single-processor and multiprocessor systems and use them efficiently for data processing, which has seen an explosive ex pansion in many areas of computer science and engineering. One approach to meeting the performance requirements of the applications has been to utilize the most powerful single-processor system that is available. When such a system does not provide the performance requirements, pipelined and parallel process ing structures can be employed. The concept of parallel processing is a depar ture from sequential processing. In sequential computation one processor is in volved and performs one operation at a time. On the other hand, in parallel computation several processors cooperate to solve a problem, which reduces computing time because several operations can be carried out simultaneously. Using several processors that work together on a given computation illustrates a new paradigm in computer problem solving which is completely different from sequential processing. From the practical point of view, this provides sufficient justification to investigate the concept of parallel processing and related issues, such as parallel algorithms. Parallel processing involves utilizing several factors, such as parallel architectures, parallel algorithms, parallel programming lan guages and performance analysis, which are strongly interrelated. In general, four steps are involved in performing a computational problem in parallel. The first step is to understand the nature of computations in the specific application domain.
Publisher: Springer Science & Business Media
ISBN: 1461212200
Category : Computers
Languages : en
Pages : 579
Book Description
Motivation It is now possible to build powerful single-processor and multiprocessor systems and use them efficiently for data processing, which has seen an explosive ex pansion in many areas of computer science and engineering. One approach to meeting the performance requirements of the applications has been to utilize the most powerful single-processor system that is available. When such a system does not provide the performance requirements, pipelined and parallel process ing structures can be employed. The concept of parallel processing is a depar ture from sequential processing. In sequential computation one processor is in volved and performs one operation at a time. On the other hand, in parallel computation several processors cooperate to solve a problem, which reduces computing time because several operations can be carried out simultaneously. Using several processors that work together on a given computation illustrates a new paradigm in computer problem solving which is completely different from sequential processing. From the practical point of view, this provides sufficient justification to investigate the concept of parallel processing and related issues, such as parallel algorithms. Parallel processing involves utilizing several factors, such as parallel architectures, parallel algorithms, parallel programming lan guages and performance analysis, which are strongly interrelated. In general, four steps are involved in performing a computational problem in parallel. The first step is to understand the nature of computations in the specific application domain.
Algorithms and Parallel Computing
Author: Fayez Gebali
Publisher: John Wiley & Sons
ISBN: 0470934638
Category : Computers
Languages : en
Pages : 372
Book Description
There is a software gap between the hardware potential and the performance that can be attained using today's software parallel program development tools. The tools need manual intervention by the programmer to parallelize the code. Programming a parallel computer requires closely studying the target algorithm or application, more so than in the traditional sequential programming we have all learned. The programmer must be aware of the communication and data dependencies of the algorithm or application. This book provides the techniques to explore the possible ways to program a parallel computer for a given application.
Publisher: John Wiley & Sons
ISBN: 0470934638
Category : Computers
Languages : en
Pages : 372
Book Description
There is a software gap between the hardware potential and the performance that can be attained using today's software parallel program development tools. The tools need manual intervention by the programmer to parallelize the code. Programming a parallel computer requires closely studying the target algorithm or application, more so than in the traditional sequential programming we have all learned. The programmer must be aware of the communication and data dependencies of the algorithm or application. This book provides the techniques to explore the possible ways to program a parallel computer for a given application.
Parallel Scientific Computing in C++ and MPI
Author: George Em Karniadakis
Publisher: Cambridge University Press
ISBN: 110749477X
Category : Computers
Languages : en
Pages : 640
Book Description
Numerical algorithms, modern programming techniques, and parallel computing are often taught serially across different courses and different textbooks. The need to integrate concepts and tools usually comes only in employment or in research - after the courses are concluded - forcing the student to synthesise what is perceived to be three independent subfields into one. This book provides a seamless approach to stimulate the student simultaneously through the eyes of multiple disciplines, leading to enhanced understanding of scientific computing as a whole. The book includes both basic as well as advanced topics and places equal emphasis on the discretization of partial differential equations and on solvers. Some of the advanced topics include wavelets, high-order methods, non-symmetric systems, and parallelization of sparse systems. The material covered is suited to students from engineering, computer science, physics and mathematics.
Publisher: Cambridge University Press
ISBN: 110749477X
Category : Computers
Languages : en
Pages : 640
Book Description
Numerical algorithms, modern programming techniques, and parallel computing are often taught serially across different courses and different textbooks. The need to integrate concepts and tools usually comes only in employment or in research - after the courses are concluded - forcing the student to synthesise what is perceived to be three independent subfields into one. This book provides a seamless approach to stimulate the student simultaneously through the eyes of multiple disciplines, leading to enhanced understanding of scientific computing as a whole. The book includes both basic as well as advanced topics and places equal emphasis on the discretization of partial differential equations and on solvers. Some of the advanced topics include wavelets, high-order methods, non-symmetric systems, and parallelization of sparse systems. The material covered is suited to students from engineering, computer science, physics and mathematics.
Introduction to Parallel Algorithms
Author: C. Xavier
Publisher: John Wiley & Sons
ISBN: 9780471251828
Category : Computers
Languages : en
Pages : 388
Book Description
Parallel algorithms Made Easy The complexity of today's applications coupled with the widespread use of parallel computing has made the design and analysis of parallel algorithms topics of growing interest. This volume fills a need in the field for an introductory treatment of parallel algorithms-appropriate even at the undergraduate level, where no other textbooks on the subject exist. It features a systematic approach to the latest design techniques, providing analysis and implementation details for each parallel algorithm described in the book. Introduction to Parallel Algorithms covers foundations of parallel computing; parallel algorithms for trees and graphs; parallel algorithms for sorting, searching, and merging; and numerical algorithms. This remarkable book: * Presents basic concepts in clear and simple terms * Incorporates numerous examples to enhance students' understanding * Shows how to develop parallel algorithms for all classical problems in computer science, mathematics, and engineering * Employs extensive illustrations of new design techniques * Discusses parallel algorithms in the context of PRAM model * Includes end-of-chapter exercises and detailed references on parallel computing. This book enables universities to offer parallel algorithm courses at the senior undergraduate level in computer science and engineering. It is also an invaluable text/reference for graduate students, scientists, and engineers in computer science, mathematics, and engineering.
Publisher: John Wiley & Sons
ISBN: 9780471251828
Category : Computers
Languages : en
Pages : 388
Book Description
Parallel algorithms Made Easy The complexity of today's applications coupled with the widespread use of parallel computing has made the design and analysis of parallel algorithms topics of growing interest. This volume fills a need in the field for an introductory treatment of parallel algorithms-appropriate even at the undergraduate level, where no other textbooks on the subject exist. It features a systematic approach to the latest design techniques, providing analysis and implementation details for each parallel algorithm described in the book. Introduction to Parallel Algorithms covers foundations of parallel computing; parallel algorithms for trees and graphs; parallel algorithms for sorting, searching, and merging; and numerical algorithms. This remarkable book: * Presents basic concepts in clear and simple terms * Incorporates numerous examples to enhance students' understanding * Shows how to develop parallel algorithms for all classical problems in computer science, mathematics, and engineering * Employs extensive illustrations of new design techniques * Discusses parallel algorithms in the context of PRAM model * Includes end-of-chapter exercises and detailed references on parallel computing. This book enables universities to offer parallel algorithm courses at the senior undergraduate level in computer science and engineering. It is also an invaluable text/reference for graduate students, scientists, and engineers in computer science, mathematics, and engineering.
Parallel Algorithms
Author: Henri Casanova
Publisher: CRC Press
ISBN: 1584889462
Category : Computers
Languages : en
Pages : 360
Book Description
Focusing on algorithms for distributed-memory parallel architectures, Parallel Algorithms presents a rigorous yet accessible treatment of theoretical models of parallel computation, parallel algorithm design for homogeneous and heterogeneous platforms, complexity and performance analysis, and essential notions of scheduling. The book extract
Publisher: CRC Press
ISBN: 1584889462
Category : Computers
Languages : en
Pages : 360
Book Description
Focusing on algorithms for distributed-memory parallel architectures, Parallel Algorithms presents a rigorous yet accessible treatment of theoretical models of parallel computation, parallel algorithm design for homogeneous and heterogeneous platforms, complexity and performance analysis, and essential notions of scheduling. The book extract
The Characteristics of Parallel Algorithms
Author: Leah H. Jamieson
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 464
Book Description
Mathematics of Computing -- Parallelism.
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 464
Book Description
Mathematics of Computing -- Parallelism.
Parallel and High Performance Computing
Author: Robert Robey
Publisher: Simon and Schuster
ISBN: 1638350388
Category : Computers
Languages : en
Pages : 702
Book Description
Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code
Publisher: Simon and Schuster
ISBN: 1638350388
Category : Computers
Languages : en
Pages : 702
Book Description
Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code
Encyclopedia of Parallel Computing
Author: David Padua
Publisher: Springer Science & Business Media
ISBN: 0387097651
Category : Computers
Languages : en
Pages : 2211
Book Description
Containing over 300 entries in an A-Z format, the Encyclopedia of Parallel Computing provides easy, intuitive access to relevant information for professionals and researchers seeking access to any aspect within the broad field of parallel computing. Topics for this comprehensive reference were selected, written, and peer-reviewed by an international pool of distinguished researchers in the field. The Encyclopedia is broad in scope, covering machine organization, programming languages, algorithms, and applications. Within each area, concepts, designs, and specific implementations are presented. The highly-structured essays in this work comprise synonyms, a definition and discussion of the topic, bibliographies, and links to related literature. Extensive cross-references to other entries within the Encyclopedia support efficient, user-friendly searchers for immediate access to useful information. Key concepts presented in the Encyclopedia of Parallel Computing include; laws and metrics; specific numerical and non-numerical algorithms; asynchronous algorithms; libraries of subroutines; benchmark suites; applications; sequential consistency and cache coherency; machine classes such as clusters, shared-memory multiprocessors, special-purpose machines and dataflow machines; specific machines such as Cray supercomputers, IBM’s cell processor and Intel’s multicore machines; race detection and auto parallelization; parallel programming languages, synchronization primitives, collective operations, message passing libraries, checkpointing, and operating systems. Topics covered: Speedup, Efficiency, Isoefficiency, Redundancy, Amdahls law, Computer Architecture Concepts, Parallel Machine Designs, Benmarks, Parallel Programming concepts & design, Algorithms, Parallel applications. This authoritative reference will be published in two formats: print and online. The online edition features hyperlinks to cross-references and to additional significant research. Related Subjects: supercomputing, high-performance computing, distributed computing
Publisher: Springer Science & Business Media
ISBN: 0387097651
Category : Computers
Languages : en
Pages : 2211
Book Description
Containing over 300 entries in an A-Z format, the Encyclopedia of Parallel Computing provides easy, intuitive access to relevant information for professionals and researchers seeking access to any aspect within the broad field of parallel computing. Topics for this comprehensive reference were selected, written, and peer-reviewed by an international pool of distinguished researchers in the field. The Encyclopedia is broad in scope, covering machine organization, programming languages, algorithms, and applications. Within each area, concepts, designs, and specific implementations are presented. The highly-structured essays in this work comprise synonyms, a definition and discussion of the topic, bibliographies, and links to related literature. Extensive cross-references to other entries within the Encyclopedia support efficient, user-friendly searchers for immediate access to useful information. Key concepts presented in the Encyclopedia of Parallel Computing include; laws and metrics; specific numerical and non-numerical algorithms; asynchronous algorithms; libraries of subroutines; benchmark suites; applications; sequential consistency and cache coherency; machine classes such as clusters, shared-memory multiprocessors, special-purpose machines and dataflow machines; specific machines such as Cray supercomputers, IBM’s cell processor and Intel’s multicore machines; race detection and auto parallelization; parallel programming languages, synchronization primitives, collective operations, message passing libraries, checkpointing, and operating systems. Topics covered: Speedup, Efficiency, Isoefficiency, Redundancy, Amdahls law, Computer Architecture Concepts, Parallel Machine Designs, Benmarks, Parallel Programming concepts & design, Algorithms, Parallel applications. This authoritative reference will be published in two formats: print and online. The online edition features hyperlinks to cross-references and to additional significant research. Related Subjects: supercomputing, high-performance computing, distributed computing
Scientific Parallel Computing
Author: Larkin Ridgway Scott
Publisher: Princeton University Press
ISBN: 0691227659
Category : Computers
Languages : en
Pages : 392
Book Description
What does Google's management of billions of Web pages have in common with analysis of a genome with billions of nucleotides? Both apply methods that coordinate many processors to accomplish a single task. From mining genomes to the World Wide Web, from modeling financial markets to global weather patterns, parallel computing enables computations that would otherwise be impractical if not impossible with sequential approaches alone. Its fundamental role as an enabler of simulations and data analysis continues an advance in a wide range of application areas. Scientific Parallel Computing is the first textbook to integrate all the fundamentals of parallel computing in a single volume while also providing a basis for a deeper understanding of the subject. Designed for graduate and advanced undergraduate courses in the sciences and in engineering, computer science, and mathematics, it focuses on the three key areas of algorithms, architecture, languages, and their crucial synthesis in performance. The book's computational examples, whose math prerequisites are not beyond the level of advanced calculus, derive from a breadth of topics in scientific and engineering simulation and data analysis. The programming exercises presented early in the book are designed to bring students up to speed quickly, while the book later develops projects challenging enough to guide students toward research questions in the field. The new paradigm of cluster computing is fully addressed. A supporting web site provides access to all the codes and software mentioned in the book, and offers topical information on popular parallel computing systems. Integrates all the fundamentals of parallel computing essential for today's high-performance requirements Ideal for graduate and advanced undergraduate students in the sciences and in engineering, computer science, and mathematics Extensive programming and theoretical exercises enable students to write parallel codes quickly More challenging projects later in the book introduce research questions New paradigm of cluster computing fully addressed Supporting web site provides access to all the codes and software mentioned in the book
Publisher: Princeton University Press
ISBN: 0691227659
Category : Computers
Languages : en
Pages : 392
Book Description
What does Google's management of billions of Web pages have in common with analysis of a genome with billions of nucleotides? Both apply methods that coordinate many processors to accomplish a single task. From mining genomes to the World Wide Web, from modeling financial markets to global weather patterns, parallel computing enables computations that would otherwise be impractical if not impossible with sequential approaches alone. Its fundamental role as an enabler of simulations and data analysis continues an advance in a wide range of application areas. Scientific Parallel Computing is the first textbook to integrate all the fundamentals of parallel computing in a single volume while also providing a basis for a deeper understanding of the subject. Designed for graduate and advanced undergraduate courses in the sciences and in engineering, computer science, and mathematics, it focuses on the three key areas of algorithms, architecture, languages, and their crucial synthesis in performance. The book's computational examples, whose math prerequisites are not beyond the level of advanced calculus, derive from a breadth of topics in scientific and engineering simulation and data analysis. The programming exercises presented early in the book are designed to bring students up to speed quickly, while the book later develops projects challenging enough to guide students toward research questions in the field. The new paradigm of cluster computing is fully addressed. A supporting web site provides access to all the codes and software mentioned in the book, and offers topical information on popular parallel computing systems. Integrates all the fundamentals of parallel computing essential for today's high-performance requirements Ideal for graduate and advanced undergraduate students in the sciences and in engineering, computer science, and mathematics Extensive programming and theoretical exercises enable students to write parallel codes quickly More challenging projects later in the book introduce research questions New paradigm of cluster computing fully addressed Supporting web site provides access to all the codes and software mentioned in the book
Introduction to Parallel Computing
Author: Ananth Grama
Publisher: Pearson Education
ISBN: 9780201648652
Category : Computers
Languages : en
Pages : 664
Book Description
A complete source of information on almost all aspects of parallel computing from introduction, to architectures, to programming paradigms, to algorithms, to programming standards. It covers traditional Computer Science algorithms, scientific computing algorithms and data intensive algorithms.
Publisher: Pearson Education
ISBN: 9780201648652
Category : Computers
Languages : en
Pages : 664
Book Description
A complete source of information on almost all aspects of parallel computing from introduction, to architectures, to programming paradigms, to algorithms, to programming standards. It covers traditional Computer Science algorithms, scientific computing algorithms and data intensive algorithms.