Pandas Basics

Pandas Basics PDF Author: Oswald Campesato
Publisher: Mercury Learning and Information
ISBN: 1683928245
Category : Computers
Languages : en
Pages : 314

Get Book Here

Book Description
This book is intended for those who plan to become data scientists as well as anyone who needs to perform data cleaning tasks using Pandas and NumPy. It contains a variety of code samples and features of NumPy and Pandas, and how to write regular expressions. Chapter 3 includes fundamental statistical concepts and Chapter 7 covers data visualization with Matplotlib and Seaborn. Companion files with code are available for downloading from the publisher. FEATURES: Provides the reader with numerous code samples for Pandas and NumPy programming concepts, and an introduction to statistical concepts and data visualization Includes an introductory chapter on Python Companion files with code

Pandas Basics

Pandas Basics PDF Author: Oswald Campesato
Publisher: Mercury Learning and Information
ISBN: 1683928245
Category : Computers
Languages : en
Pages : 314

Get Book Here

Book Description
This book is intended for those who plan to become data scientists as well as anyone who needs to perform data cleaning tasks using Pandas and NumPy. It contains a variety of code samples and features of NumPy and Pandas, and how to write regular expressions. Chapter 3 includes fundamental statistical concepts and Chapter 7 covers data visualization with Matplotlib and Seaborn. Companion files with code are available for downloading from the publisher. FEATURES: Provides the reader with numerous code samples for Pandas and NumPy programming concepts, and an introduction to statistical concepts and data visualization Includes an introductory chapter on Python Companion files with code

Introduction to Data Science with Python

Introduction to Data Science with Python PDF Author: Mark Smart
Publisher: Independently Published
ISBN: 9781731036841
Category :
Languages : en
Pages : 102

Get Book Here

Book Description
This book is a guide for you on how to use Pandas and Numpy in Python programming language for data analysis. The author begins by helping you familiarize yourself with the basics of data science, Numpy and Pandas. You are guided on how to work with Numpy arrays and how to manipulate them. The various operations that you can perform on your data via the Pandas library have been discussed. You will also know how to create various data structures in Pandas for data storage. Data from the environment is dirty. The process of cleaning such data has been discussed. This involves handling outliers, missing values etc. The author guides you on how to work with data in various types of storage formats. Examples include MS Excel, CSV files, JSON, etc. You are also guided on how to calculate various measures for your data. The process of visualizing data has been explored in detail. About this book: Getting Started with Python for Data Science Working with Numpy Working with Pandas Cleansing Data Working with CSV Data Working with XLS Data Data Wrangling Measures of Central Tendency Calculating Variance Normal Distribution Working with JSON Data Data Visualization Tags: data science with python, python, pandas programming, numpy, pandas, pandas python, pandas in python, numpy in python, numpy python, numpy pandas, data science, ms excel books, json, python for data science, pivot tables, excel pivot tables, data visualisation, data visualisation python, data visualisation for dummies, data visualisation excel, algorithms for data science.

Pandas in Action

Pandas in Action PDF Author: Boris Paskhaver
Publisher: Simon and Schuster
ISBN: 163835104X
Category : Computers
Languages : en
Pages : 438

Get Book Here

Book Description
Take the next steps in your data science career! This friendly and hands-on guide shows you how to start mastering Pandas with skills you already know from spreadsheet software. In Pandas in Action you will learn how to: Import datasets, identify issues with their data structures, and optimize them for efficiency Sort, filter, pivot, and draw conclusions from a dataset and its subsets Identify trends from text-based and time-based data Organize, group, merge, and join separate datasets Use a GroupBy object to store multiple DataFrames Pandas has rapidly become one of Python's most popular data analysis libraries. In Pandas in Action, a friendly and example-rich introduction, author Boris Paskhaver shows you how to master this versatile tool and take the next steps in your data science career. You’ll learn how easy Pandas makes it to efficiently sort, analyze, filter and munge almost any type of data. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Data analysis with Python doesn’t have to be hard. If you can use a spreadsheet, you can learn pandas! While its grid-style layouts may remind you of Excel, pandas is far more flexible and powerful. This Python library quickly performs operations on millions of rows, and it interfaces easily with other tools in the Python data ecosystem. It’s a perfect way to up your data game. About the book Pandas in Action introduces Python-based data analysis using the amazing pandas library. You’ll learn to automate repetitive operations and gain deeper insights into your data that would be impractical—or impossible—in Excel. Each chapter is a self-contained tutorial. Realistic downloadable datasets help you learn from the kind of messy data you’ll find in the real world. What's inside Organize, group, merge, split, and join datasets Find trends in text-based and time-based data Sort, filter, pivot, optimize, and draw conclusions Apply aggregate operations About the reader For readers experienced with spreadsheets and basic Python programming. About the author Boris Paskhaver is a software engineer, Agile consultant, and online educator. His programming courses have been taken by 300,000 students across 190 countries. Table of Contents PART 1 CORE PANDAS 1 Introducing pandas 2 The Series object 3 Series methods 4 The DataFrame object 5 Filtering a DataFrame PART 2 APPLIED PANDAS 6 Working with text data 7 MultiIndex DataFrames 8 Reshaping and pivoting 9 The GroupBy object 10 Merging, joining, and concatenating 11 Working with dates and times 12 Imports and exports 13 Configuring pandas 14 Visualization

Python for Data Analysis

Python for Data Analysis PDF Author: Wes McKinney
Publisher: "O'Reilly Media, Inc."
ISBN: 1491957611
Category : Computers
Languages : en
Pages : 553

Get Book Here

Book Description
Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples

Pandas Cookbook

Pandas Cookbook PDF Author: Theodore Petrou
Publisher: Packt Publishing Ltd
ISBN: 1784393347
Category : Computers
Languages : en
Pages : 534

Get Book Here

Book Description
Over 95 hands-on recipes to leverage the power of pandas for efficient scientific computation and data analysis About This Book Use the power of pandas to solve most complex scientific computing problems with ease Leverage fast, robust data structures in pandas to gain useful insights from your data Practical, easy to implement recipes for quick solutions to common problems in data using pandas Who This Book Is For This book is for data scientists, analysts and Python developers who wish to explore data analysis and scientific computing in a practical, hands-on manner. The recipes included in this book are suitable for both novice and advanced users, and contain helpful tips, tricks and caveats wherever necessary. Some understanding of pandas will be helpful, but not mandatory. What You Will Learn Master the fundamentals of pandas to quickly begin exploring any dataset Isolate any subset of data by properly selecting and querying the data Split data into independent groups before applying aggregations and transformations to each group Restructure data into tidy form to make data analysis and visualization easier Prepare real-world messy datasets for machine learning Combine and merge data from different sources through pandas SQL-like operations Utilize pandas unparalleled time series functionality Create beautiful and insightful visualizations through pandas direct hooks to Matplotlib and Seaborn In Detail This book will provide you with unique, idiomatic, and fun recipes for both fundamental and advanced data manipulation tasks with pandas. Some recipes focus on achieving a deeper understanding of basic principles, or comparing and contrasting two similar operations. Other recipes will dive deep into a particular dataset, uncovering new and unexpected insights along the way. The pandas library is massive, and it's common for frequent users to be unaware of many of its more impressive features. The official pandas documentation, while thorough, does not contain many useful examples of how to piece together multiple commands like one would do during an actual analysis. This book guides you, as if you were looking over the shoulder of an expert, through practical situations that you are highly likely to encounter. Many advanced recipes combine several different features across the pandas library to generate results. Style and approach The author relies on his vast experience teaching pandas in a professional setting to deliver very detailed explanations for each line of code in all of the recipes. All code and dataset explanations exist in Jupyter Notebooks, an excellent interface for exploring data.

Python Data Science Handbook

Python Data Science Handbook PDF Author: Jake VanderPlas
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912138
Category : Computers
Languages : en
Pages : 609

Get Book Here

Book Description
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Thinking in Pandas

Thinking in Pandas PDF Author: Hannah Stepanek
Publisher: Apress
ISBN: 1484258398
Category : Computers
Languages : en
Pages : 190

Get Book Here

Book Description
Understand and implement big data analysis solutions in pandas with an emphasis on performance. This book strengthens your intuition for working with pandas, the Python data analysis library, by exploring its underlying implementation and data structures. Thinking in Pandas introduces the topic of big data and demonstrates concepts by looking at exciting and impactful projects that pandas helped to solve. From there, you will learn to assess your own projects by size and type to see if pandas is the appropriate library for your needs. Author Hannah Stepanek explains how to load and normalize data in pandas efficiently, and reviews some of the most commonly used loaders and several of their most powerful options. You will then learn how to access and transform data efficiently, what methods to avoid, and when to employ more advanced performance techniques. You will also go over basic data access and munging in pandas and the intuitive dictionary syntax. Choosing the right DataFrame format, working with multi-level DataFrames, and how pandas might be improved upon in the future are also covered. By the end of the book, you will have a solid understanding of how the pandas library works under the hood. Get ready to make confident decisions in your own projects by utilizing pandas—the right way. What You Will Learn Understand the underlying data structure of pandas and why it performs the way it does under certain circumstancesDiscover how to use pandas to extract, transform, and load data correctly with an emphasis on performanceChoose the right DataFrame so that the data analysis is simple and efficient.Improve performance of pandas operations with other Python libraries Who This Book Is ForSoftware engineers with basic programming skills in Python keen on using pandas for a big data analysis project. Python software developers interested in big data.

Ultimate Neural Network Programming with Python

Ultimate Neural Network Programming with Python PDF Author: Vishal Rajput
Publisher: Orange Education Pvt Ltd
ISBN: 9391246540
Category : Computers
Languages : en
Pages : 366

Get Book Here

Book Description
Master Neural Networks for Building Modern AI Systems. KEY FEATURES ● Comprehensive Coverage of Foundational AI Concepts and Theories. ● In-Depth Exploration of Maths Behind Neural Network Mathematics. ● Effective Strategies for Structuring Deep Learning Code. ● Real-World Applications of AI Principles and Techniques. DESCRIPTION This book is a practical guide to the world of Artificial Intelligence (AI), unraveling the math and principles behind applications like Google Maps and Amazon. The book starts with an introduction to Python and AI, demystifies complex AI math, teaches you to implement AI concepts, and explores high-level AI libraries. Throughout the chapters, readers are engaged with the book through practice exercises, and supplementary learnings. The book then gradually moves to Neural Networks with Python before diving into constructing ANN models and real-world AI applications. It accommodates various learning styles, letting readers focus on hands-on implementation or mathematical understanding. This book isn't just about using AI tools; it's a compass in the world of AI resources, empowering readers to modify and create tools for complex AI systems. It ensures a journey of exploration, experimentation, and proficiency in AI, equipping readers with the skills needed to excel in the AI industry. WHAT WILL YOU LEARN ● Leverage TensorFlow and Keras while building the foundation for creating AI pipelines. ● Explore advanced AI concepts, including dimensionality reduction, unsupervised learning, and optimization techniques. ● Master the intricacies of neural network construction from the ground up. ● Dive deeper into neural network development, covering derivatives, backpropagation, and optimization strategies. ● Harness the power of high-level AI libraries to develop production-ready code, allowing you to accelerate the development of AI applications. ● Stay up-to-date with the latest breakthroughs and advancements in the dynamic field of artificial intelligence. WHO IS THIS BOOK FOR? This book serves as an ideal guide for software engineers eager to explore AI, offering a detailed exploration and practical application of AI concepts using Python. AI researchers will find this book enlightening, providing clear insights into the mathematical concepts underlying AI algorithms and aiding in writing production-level code. This book is designed to enhance your skills and knowledge to create sophisticated, AI-powered solutions and advance in the multifaceted field of AI. TABLE OF CONTENTS 1. Understanding AI History 2. Setting up Python Workflow for AI Development 3. Python Libraries for Data Scientists 4. Foundational Concepts for Effective Neural Network Training 5. Dimensionality Reduction, Unsupervised Learning and Optimizations 6. Building Deep Neural Networks from Scratch 7. Derivatives, Backpropagation, and Optimizers 8. Understanding Convolution and CNN Architectures 9. Understanding the Basics of TensorFlow and Keras 10. Building End-to-end Image Segmentation Pipeline 11. Latest Advancements in AI Index

Pandas for Everyone

Pandas for Everyone PDF Author: Daniel Y. Chen
Publisher: Addison-Wesley Professional
ISBN: 0134547055
Category : Computers
Languages : en
Pages : 1093

Get Book Here

Book Description
The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems. Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine datasets and handle missing data Reshape, tidy, and clean datasets so they’re easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large datasets with groupby Leverage Pandas’ advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the “best” Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning

Pandas Brain Teasers

Pandas Brain Teasers PDF Author: Miki Tebeka
Publisher: Pragmatic Bookshelf
ISBN: 1680509101
Category : Computers
Languages : en
Pages : 97

Get Book Here

Book Description
This book contains 25 short programs that will challenge your understanding of Pandas. Like any big project, the Pandas developers had to make some design decisions that at times seem surprising. This book uses those quirks as a teaching opportunity. By understanding the gaps in your knowledge, you'll become better at what you do. Some of the teasers are from the author's experience shipping bugs to production, and some from others doing the same. Teasers and puzzles are fun, and learning how to solve them can teach you to avoid programming mistakes and maybe even impress your colleagues and future employers. Working with data is central to nearly everything we do, from disease contact tracing and analyzing health records to smart meters that track utility consumption behavior. With the power of Python's pandas library, you can process and analyze this data in a highly efficient and simple-to-understand way. And with 25 brain teasers designed to turn this technology's quirks into a teaching opportunity, you'll be honing your data science skills while having fun at the same time. Following a simple format, you'll challenge yourself and your understanding of pandas. Read a short Python program that uses pandas, try to guess the output, run the code yourself, and then go to the next page for an explanation of the solution. From common pitfalls and hidden gotchas to unexpected twists and turns, you'll deepen your understanding of pandas, learn to write more efficient code, and reduce the number of bugs in the software you develop. You may even impress your colleagues and your employers, both present and future. Learn the tricks of the trade with Python's pandas, in one of the most fun and creative ways around. What You Need: To run the code you'll need Python version 3.8 or upper and Pandas version 1.0 or upper installed. We use Python version 3.8.3 and Pandas version 1.0.5; the output might change in future versions.