Oxidative Coupling of Methane

Oxidative Coupling of Methane PDF Author: Sanjay Krishna Agarwal
Publisher:
ISBN:
Category : Methane
Languages : en
Pages : 173

Get Book Here

Book Description

Oxidative Coupling of Methane

Oxidative Coupling of Methane PDF Author: Sanjay Krishna Agarwal
Publisher:
ISBN:
Category : Methane
Languages : en
Pages : 173

Get Book Here

Book Description


Methane Conversion by Oxidative Processes

Methane Conversion by Oxidative Processes PDF Author: Wolf
Publisher: Springer Science & Business Media
ISBN: 9401574499
Category : Technology & Engineering
Languages : en
Pages : 556

Get Book Here

Book Description
A reasonable case could be made that the scientific interest in catalytic oxidation was the basis for the recognition of the phenomenon of catalysis. Davy, in his attempt in 1817 to understand the science associated with the safety lamp he had invented a few years earlier, undertook a series of studies that led him to make the observation that a jet of gas, primarily methane, would cause a platinum wire to continue to glow even though the flame was extinguished and there was no visible flame. Dobereiner reported in 1823 the results of a similar investigation and observed that spongy platina would cause the ignition of a stream of hydrogen in air. Based on this observation Dobereiner invented the first lighter. His lighter employed hydrogen (generated from zinc and sulfuric acid) which passed over finely divided platinum and which ignited the gas. Thousands of these lighters were used over a number of years. Dobereiner refused to file a patent for his lighter, commenting that "I love science more than money." Davy thought the action of platinum was the result of heat while Dobereiner believed the ~ffect ~as a manifestation of electricity. Faraday became interested in the subject and published a paper on it in 1834; he concluded that the cause for this reaction was similar to other reactions.

Catalysis for C1 Chemistry: Oxidative Coupling of Methane Using Nanofiber Catalysts and Discovery of Catalysts for Atmospheric Reduction of CO2 to Methanol

Catalysis for C1 Chemistry: Oxidative Coupling of Methane Using Nanofiber Catalysts and Discovery of Catalysts for Atmospheric Reduction of CO2 to Methanol PDF Author: Bahman Zohour
Publisher:
ISBN:
Category :
Languages : en
Pages : 168

Get Book Here

Book Description
The goal of this research is to explore novel catalytic material and systems for effective conversion of C1 feed. Catalysis of C1 chemistry is of critical importance for the clean production of fuels and chemicals and future energy sustainability. Herein, two processes were studied: In the first section, a comprehensive study of oxidative coupling of methane (OCM) using novel nanofiber catalysts of mixed metal oxides was undertaken and in the second section, direct catalytic conversion of carbon dioxide (CO2) to methanol was studied, which resulted in discovery of a superior catalytic system for CO2 hydrogenation to methanol. Section 1: Utilization of natural gas as an alternate chemical feedstock to petroleum has been a highly desirable but difficult goal in industrial catalysis. Accordingly, there has been a substantial interest in the oxidative coupling of methane (OCM), which allows for the direct catalytic conversion of methane into economically valuable C2+ hydrocarbons. OCM is a complex reaction process involving heterogeneous catalysis intricately coupled with gas phase reactions; hence, despite decades' worth of research, it has yet to be commercialized. The lack of progress in OCM is primarily due to the following reasons: 1. The absence of a highly active and robust catalyst that can operate at lower temperatures; and 2. Our inadequate understanding of the underlying detailed chemical kinetics mechanism (DCKM) of the OCM process, which impedes the undertaking of quantitative simulations of novel reactor configurations and/or operating strategies. To address these issues, we undertook the following program of studies: 1. Further improved the synthesis of novel nanofiber catalysts by electrospinning, building on the early discovery that La2O3-CeO2 nanofibers were highly active and robust OCM catalysts; 2. Applied our novel microprobe sampling system to OCM reactors for the acquisition of spatially resolved species concentration and temperatures profiles within the catalytic zone. Our novel sampling approach led to the important discovery that H2 is produced very early in the OCM catalytic zone, an observation that was completely missed in all prior studies. The application of our novel microprobe system to a dual-bed OCM reactor also demonstrated the feasibility to significantly improve C2+ product yields to 21% (from 16% for single bed) which we plan to further improve by considering more sequential beds; 3. Outlined development and validation of new generation of DCKM for the OCM process using the high-information content of spatial concentration profiles obtained in part 2. Most importantly, to improve the current DCKM literature by considering surface reactions that result in early H2 formation. Validated DCKM represent highly valuable numerical tools that allow for the prediction of the OCM performance of different reactor configurations operating under a broad range of conditions, e.g. high pressures, porous wall reactors etc. Consequently, this new generation of comprehensive DCKM based on the sampling profiles, detailed in this report, will be of considerable use in improving the yields of useful products in the OCM process; 4. Explore novel conditions that include oxygen-feed distributed packed bed OCM reactors and coupled catalytic and non-thermal plasma OCM reactors, again to further push the yields for useful C2+ products. The details of the proposed approach for implementing such reactor configurations and development of a new generation of DCKM for the OCM process is outlined in the future work, Chapter 4, of section 1 of the report. Section 2: Direct catalytic conversion of carbon dioxide to liquid fuels and basic chemicals, such as methanol, using solar-derived hydrogen at or near ambient pressure is a highly desirable goal in heterogeneous catalysis. When realized, this technology will pave the way for a sustainable society together with decentralized power generation. Here we report a novel class of holmium (Ho) containing multi-metal oxide Cu catalysts discovered through the application of high-throughput methods. In particular, ternary systems of Cu-GaOx-HoOy > Cu-CeOx-HoOy ~ Cu-LaOx-HoOy supported on -Al2O3 exhibited superior methanol production (10x) with less CO formation than previously reported catalysts at atmospheric pressure. Holmium was shown to be highly dispersed as few-atom clusters, suggesting that the formation of tri-metallic sites could be the key for the promotion of methanol synthesis by Ho.

Natural Gas Conversion V

Natural Gas Conversion V PDF Author: A. Parmaliana
Publisher: Elsevier
ISBN: 0080537308
Category : Technology & Engineering
Languages : en
Pages : 1005

Get Book Here

Book Description
On January 1988, the ascertained and economically accessible reserves of Natural Gas (NG) amounted to over 144,000 billion cubic meters worldwide, corresponding to 124 billion tons of oil equivalents (comparable with the liquid oil reserves, which are estimated to be 138 billion TOE). It is hypothesized that the volume of NG reserve will continue to grow at the same rate of the last decade. Forecasts on production indicate a potential increase from about 2,000 billion cubic meters in 1990 to not more than 3,300 billion cubic meters in 2010, even in a high economic development scenario. NG consumption represents only one half of oil: 1.9 billion TOE/y as compared to 3.5 of oil. Consequently, in the future gas will exceed oil as a carbon atom source. In the future the potential for getting energetic vectors or petrochemicals from NG will continue to grow.The topics covered in Natural Gas Conversion V reflect the large global R&D effort to look for new and economic ways of NG exploitation. These range from the direct conversion of methane and light paraffins to the indirect conversion through synthesis gas to fuels and chemicals. Particularly underlined and visible are the technologies already commercially viable.These proceedings prove that mature and technologically feasible processes for natural gas conversion are already available and that new and improved catalytic approaches are currently developing, the validity and feasibility of which will soon be documented. This is an exciting area of modern catalysis, which will certainly open novel and rewarding perspectives for the chemical, energy and petrochemical industries.

Natural Gas Conversion

Natural Gas Conversion PDF Author: A. Holmen
Publisher: Elsevier
ISBN: 0080879179
Category : Science
Languages : en
Pages : 585

Get Book Here

Book Description
These proceedings reflect the extensive fundamental and applied research efforts that are currently being made on the conversion of gas, in particular on the direct conversion of methane. The Symposium in Oslo focused on the following topics: Direct conversion of methane, Fischer-Tropsch chemistry, methanol conversion and natural gas conversion processes. The main aim was to present the state-of-the-art and progress currently being made within each of these areas. The book contains the papers presented and includes plenary lectures, short communications and posters. The papers will be of interest to scientists and engineers working in the field of gas conversion, transportation fuels, primary petrochemicals and catalysis.

Mechanistic Studies on the Oxidative Coupling of Methane

Mechanistic Studies on the Oxidative Coupling of Methane PDF Author: Chunlei Shi
Publisher:
ISBN:
Category :
Languages : en
Pages : 324

Get Book Here

Book Description


Metal Oxides in Heterogeneous Catalysis

Metal Oxides in Heterogeneous Catalysis PDF Author: Jacques C. Vedrine
Publisher: Elsevier
ISBN: 0128116323
Category : Technology & Engineering
Languages : en
Pages : 620

Get Book Here

Book Description
Metal Oxides in Heterogeneous Catalysis is an overview of the past, present and future of heterogeneous catalysis using metal oxides catalysts. The book presents the historical, theoretical, and practical aspects of metal oxide-based heterogeneous catalysis. Metal Oxides in Heterogeneous Catalysis deals with fundamental information on heterogeneous catalysis, including reaction mechanisms and kinetics approaches.There is also a focus on the classification of metal oxides used as catalysts, preparation methods and touches on zeolites, mesoporous materials and Metal-organic frameworks (MOFs) in catalysis. It will touch on acid or base-type reactions, selective (partial) and total oxidation reactions, and enzymatic type reactions The book also touches heavily on the biomass applications of metal oxide catalysts and environmentally related/depollution reactions such as COVs elimination, DeNOx, and DeSOx. Finally, the book also deals with future trends and prospects in metal oxide-based heterogeneous catalysis. - Presents case studies in each chapter that provide a focus on the industrial applications - Includes fundamentals, key theories and practical applications of metal oxide-based heterogeneous catalysis in one comprehensive resource - Edited, and contributed, by leading experts who provide perspectives on synthesis, characterization and applications

Methane Conversion

Methane Conversion PDF Author: D.M. Bibby
Publisher: Elsevier
ISBN: 0080960707
Category : Technology & Engineering
Languages : en
Pages : 759

Get Book Here

Book Description
This proceedings volume comprises the invited plenary lectures, contributed and poster papers presented at a symposium organised to mark the successful inauguration of the world's first commercial plant for production of gasoline from natural gas, based on the Mobil methanol-to-gasoline process. The objectives of the Symposium were to present both fundamental research and engineering aspects of the development and commercialization of gas-to-gasoline processes. These include steam reforming, methanol synthesis and methanol-to-gasoline. Possible alternative processes e.g. MOGD, Fischer-Tropsch synthesis of hydrocarbons, and the direct conversion of methane to higher hydrocarbons were also considered.The papers in this volume provide a valuable and extremely wide-ranging overview of current research into the various options for natural gas conversion, giving a detailed description of the gas-to-gasoline process and plant. Together, they represent a unique combination of fundamental surface chemistry catalyst characterization, reaction chemistry and engineering scale-up and commercialization.

Third World Congress on Oxidation Catalysis

Third World Congress on Oxidation Catalysis PDF Author: S.T. Oyama
Publisher: Elsevier
ISBN: 0080544711
Category : Technology & Engineering
Languages : en
Pages : 1277

Get Book Here

Book Description
The overall theme of the 3rd World Congress is "Atom Efficient Catalytic Oxidations for Global Technologies". This theme was chosen to stimulate the participants to report their findings with an emphasis on conserving valuable material in their catalytic transformations, as well as conserving energy, in an environmentally responsible manner. Progress towards this stated goal is substantial as evidenced by the tremendous response of the community in their participation of quality publications complied in these Proceedings of the Congress.The subjects presented span a wide range of oxidation reactions and catalysts. These include the currently important area of lower alkane oxidation to the corresponding olefins, unsaturated aldehydes, acids and nitriles.The four featured lectures and seven plenary lectures constitute the general background and overview of the subject matter at hand. The 104 contributed papers and 13 poster manuscripts, summarized in this compendium, probe new avenues to achieve catalytically efficient oxidation reactions for the future needs of mankind in a global environment.

Methane Conversion by Oxidative Processes

Methane Conversion by Oxidative Processes PDF Author: Eduardo E. Wolf
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 566

Get Book Here

Book Description
A reasonable case could be made that the scientific interest in catalytic oxidation was the basis for the recognition of the phenomenon of catalysis. Davy, in his attempt in 1817 to understand the science associated with the safety lamp he had invented a few years earlier, undertook a series of studies that led him to make the observation that a jet of gas, primarily methane, would cause a platinum wire to continue to glow even though the flame was extinguished and there was no visible flame. Dobereiner reported in 1823 the results of a similar investigation and observed that spongy platina would cause the ignition of a stream of hydrogen in air. Based on this observation Dobereiner invented the first lighter. His lighter employed hydrogen (generated from zinc and sulfuric acid) which passed over finely divided platinum and which ignited the gas. Thousands of these lighters were used over a number of years. Dobereiner refused to file a patent for his lighter, commenting that "I love science more than money." Davy thought the action of platinum was the result of heat while Dobereiner believed the ~ffect ~as a manifestation of electricity. Faraday became interested in the subject and published a paper on it in 1834; he concluded that the cause for this reaction was similar to other reactions.