Otolith Analysis of Pre-restoration Habitat Use by Chinook Salmon in the Delta-flats and Nearshore Regions of the Nisqually River Estuary

Otolith Analysis of Pre-restoration Habitat Use by Chinook Salmon in the Delta-flats and Nearshore Regions of the Nisqually River Estuary PDF Author: Angela Lind-Null
Publisher:
ISBN:
Category : Chinook salmon
Languages : en
Pages : 28

Get Book Here

Book Description

Otolith Analysis of Pre-restoration Habitat Use by Chinook Salmon in the Delta-flats and Nearshore Regions of the Nisqually River Estuary

Otolith Analysis of Pre-restoration Habitat Use by Chinook Salmon in the Delta-flats and Nearshore Regions of the Nisqually River Estuary PDF Author: Angela Lind-Null
Publisher:
ISBN:
Category : Chinook salmon
Languages : en
Pages : 28

Get Book Here

Book Description


Pre-restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis

Pre-restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis PDF Author: Angela Lind-Null
Publisher:
ISBN:
Category : Chinook salmon
Languages : en
Pages : 18

Get Book Here

Book Description
"The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the Federal Endangered Species Act (ESA). Preservation and extensive restoration of the Nisqually delta ecosystem is currently taking place to assist in recovery of the stock as juvenile Fall Chinook salmon are dependent upon the estuary. A pre-restoration baseline that includes characterization of life history types, estuary residence times, growth rates, and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and determine restoration success. Otolith analysis was selected to examine Chinook salmon life history, growth, and residence in the Nisqually Estuary. Previously funded work on wild samples collected in 2004 established the growth rate and length of residence associated with various habitats. The purpose of the current study is to build on the previous work by incorporating otolith microstructure analysis from 2005 (second sampling year), to verify findings from 2004, and to evaluate between-year variation in otolith microstructure. Our results from this second year of analysis indicated no inter-annual variation in the appearance of the tidal delta check (TDCK) and delta-flats check (DFCK). However, a new life history type (fry migrant) was observed on samples collected in 2005. Fish caught in the tidal delta regardless of capture date spent an average of 17 days in the tidal delta. There was a corresponding increase in growth rate as the fish migrated from freshwater (FW) to tidal delta to nearshore (NS) habitats. Fish grew 33 percent faster in the tidal delta than in FW habitat and slightly faster (14 percent) in the delta flats (DF) habitat compared to the tidal delta."--Abstract.

Coastal Habitats of the Elwha River, Washington

Coastal Habitats of the Elwha River, Washington PDF Author: Jeffrey J. Duda
Publisher:
ISBN:
Category : Coastal ecology
Languages : en
Pages : 276

Get Book Here

Book Description


Dynamic Habitat Models for Estuary-dependent Chinook Salmon

Dynamic Habitat Models for Estuary-dependent Chinook Salmon PDF Author: Melanie Jeanne Davis
Publisher:
ISBN:
Category :
Languages : en
Pages : 228

Get Book Here

Book Description
A complex mosaic of estuarine habitats is postulated to bolster the growth and survival of juvenile Chinook salmon by diversifying the availability and configuration of prey and refugia. Consequently, efforts are underway along the North American Pacific Coast to return modified coastal ecosystems to historical or near-historical conditions, but restoring habitats are often more sensitive to anthropogenic or climate-mediated disturbance than relict (unaltered) habitats. Estuaries are expected to experience longer inundation durations as sea-levels rise, leading to reductions in intertidal emergent marshes, mudflats, and eelgrass beds. Furthermore, rising ocean temperatures may have metabolic consequences for fall-run populations of Chinook salmon, which tend to out-migrate during the spring and summer. Extensive monitoring programs have allowed managers to assess the initial benefits of management efforts (including restoration) for juvenile salmon at local and regional scales, but at present they have limited options for predicting and responding to the concurrent effects of climate change in restoring and relict coastal ecosystems. For my dissertation I addressed this gap in knowledge using a comprehensive monitoring dataset from the restoring Nisqually River Delta in southern Puget Sound, Washington. I focused on the following questions: 1) How do juvenile Chinook salmon prey consumption and dietary energy density vary throughout a mosaic of estuarine habitats, and is this variation related to differences in physiological condition? 2) How do among-habitat differences in thermal regime and prey consumption affect the bioenergetic growth potential of juvenile Chinook salmon? 3) How will shifts in the estuarine habitat mosaic vary under different sea-level rise and management scenarios? and 4) How will these climate- and management-mediated shifts in the estuarine habitat mosaic impact habitat quality for juvenile Chinook salmon? To address the first question, I used stomach content and stable isotope analyses to analyze the diets of wild and hatchery Chinook salmon captured in different estuarine habitats during the out-migration season (March-July of 2014 and 2015). I also linked measures of stomach fullness and dietary energy density to body condition. To address the second question, I used a bioenergetics model to determine how among-habitat differences in water temperature and diet might affect juvenile Chinook salmon growth. To address the third question, I designed and calibrated a marsh accretion model and decision support tool using post-restoration monitoring data sets and spatial coverages. Finally, to address the fourth question, I combined output from the marsh accretion model, a hydrological model, and measurements of prey availability into a spatially explicit version of the bioenergetics model to assess the habitat quality and growth rate potential of the entire estuarine habitat mosaic under different sea-level rise and management scenarios. When considered in tandem, these chapters represent a novel approach to habitat management. Assessments of juvenile salmon diet and physiology, marsh accretion models, and bioenergetics models have been independently implemented along the Pacific Coast, but the amalgamation of all three approaches into a single, spatially explicit analysis represents a novel and significant contribution to the scientific literature. In conducting these analyses for the Nisqually River Delta, some major themes emerged regarding the importance and vulnerability of specific habitats. An integrative diet analysis using stomach contents and stable isotopes found distinct dietary niches between wild and hatchery Chinook salmon. Wild fish were more likely to utilize the freshwater tidal forested and transitional brackish marsh habitats along the main stem river, where energy-rich insect drift made up most of their dietary biomass. The availability and consumption of insect prey resulted in distinct benefits to body condition and growth, as determined by direct physiological measurements and output from the habitat-specific bioenergetics model. These findings highlight the importance of freshwater and brackish emergent marsh habitats with overhanging vegetation, which can regulate water temperatures and supply insect drift. Unfortunately, freshwater tidal forests, brackish marshes, and low and high elevation emergent salt marshes are highly vulnerable to sea-level rise, especially when geological and anthropogenic features limit sediment accretion or lateral expansion. When spatial layers from the marsh accretion model were incorporated into the spatially explicit version of the bioenergetics model, output indicated that loss of low and high salt marsh reduced the amount of prey available for juvenile salmon, thus decreasing modeled growth rate potential. In all, these findings highlight the importance of preserving the estuarine habitat mosaic for out-migrating juvenile salmon, especially as tidal regimes and ocean temperatures continue to shift through time.

The Effects of Wetland Loss and Restoration on the Foraging Performance and Growth Potential of Juvenile Chinook Salmon in Pacific Northwest Estuaries

The Effects of Wetland Loss and Restoration on the Foraging Performance and Growth Potential of Juvenile Chinook Salmon in Pacific Northwest Estuaries PDF Author: Aaron David
Publisher:
ISBN:
Category : Chinook salmon
Languages : en
Pages : 105

Get Book Here

Book Description
During the transition of juveniles from fresh water to estuarine and coastal environments, the survival of Pacific salmon (Oncorhynchus spp.) can be strongly size-selective and cohort abundance is partly determined. Because the quantity and quality of food consumed influence juvenile salmon growth, high rates of prey and energy acquisition during estuarine residence are important for survival. Human activities may have affected the foraging performance of juvenile salmon in estuaries by reducing the area of wetlands and by altering the abundance of conspecifics. To improve our understanding of the effects of wetland loss and conspecific density on juvenile salmon foraging performance and diet composition in estuaries, I assembled Chinook salmon (O. tshawytscha) diet and density data from nine U.S. Pacific Northwest estuaries across a gradient of wetland loss. We evaluated the influence of wetland loss and conspecific density on juvenile Chinook salmon instantaneous ration and energy ration, two measures of foraging performance, and whether the effect of density varied among estuaries with different levels of wetland loss. We also assessed the influence of wetland loss and three other covariates on salmon diet composition. There was no evidence of a direct effect of wetland loss on juvenile salmon foraging performance, but wetland loss mediated the effect of conspecific density on salmon foraging performance and altered salmon diet composition. These results suggest that habitat loss can interact with conspecific density to constrain the foraging performance of juvenile fishes, and ultimately their growth, during a life-history stage when survival is positively correlated with growth and size. I also evaluated whether restoring tidal flow to previously diked estuarine wetlands also restores foraging and growth opportunities for juvenile Chinook salmon. Several studies have assessed the value of restored tidal wetlands for juvenile salmon, but few have used integrative measures of salmon physiological performance, such as habitat-specific growth potential, to evaluate restoration. Our study took place in the Nisqually River delta, where recent dike removals restored tidal flow to 364 ha of marsh, the largest tidal marsh restoration in the Pacific Northwest. To compare Chinook salmon foraging performance and growth potential in two restored and two reference marshes over three years post-restoration, we sampled fish assemblages, water temperatures, and juvenile Chinook salmon diet composition and consumption rates, and used these data as inputs to a bioenergetics model. We found that juvenile Chinook salmon foraging performance and growth potential were similar between the restored and reference marshes. However, densities of Chinook salmon were significantly lower in the restored marshes and growth potential was more variable in the restored marshes due to their more variable and warmer (2?? C) water temperatures compared to the reference marshes. These results indicate that some but not all ecosystem attributes that are important to juvenile salmon rapidly recover following large-scale tidal marsh restoration.

Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus Tshawytscha), Final Report

Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus Tshawytscha), Final Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 186

Get Book Here

Book Description
The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review of the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and agricultural and industrial development. In some cases, the riverbed is armored such that it is more difficult for spawners to move, while in other cases the intrusion of fine sediment into spawning gravels has reduced water flow to sensitive eggs and young fry. Recovery of fall Chinook salmon populations may involve habitat restoration through such actions as dam removal and reservoir drawdown. In addition, habitat protection will be accomplished through set-asides of existing high-quality habitat. A key component to evaluating these actions is quantifying the salmon spawning habitat potential of a given river reach so that realistic recovery goals for salmon abundance can be developed. Quantifying salmon spawning habitat potential requires an understanding of the spawning behavior of Chinook salmon, as well as an understanding of the physical habitat where these fish spawn. Increasingly, fish biologists are recognizing that assessing the physical habitat of riverine systems where salmon spawn goes beyond measuring microhabitat like water depth, velocity, and substrate size. Geomorphic features of the river measured over a range of spatial scales set up the physical template upon which the microhabitat develops, and successful assessments of spawning habitat potential incorporate these geomorphic features. We had three primary objectives for this study. The first objective was to determine the relationship between physical habitats at different spatial scales and fall Chinook salmon spawning locations. The second objective was to estimate the fall Chinook salmon redd capacity for the Reach. The third objective was to suggest a protocol for determining preferable spawning reaches of fall Chinook salmon. To ensure that we collected physical data within habitat that was representative of the full range of potential spawning habitat, the study area was stratified based on geomorphic features of the river using a two-dimensional river channel index that classified the river cross section into one of four shapes based on channel symmetry, depth, and width. We found that this river channel classification system was a good predictor at the scale of a river reach ((almost equal to)1 km) of where fall Chinook salmon would spawn. Using this two-dimensional river channel index, we selected study areas that were representative of the geomorphic classes. A total of nine study sites distributed throughout the middle 27 km of the Reach (study area) were investigated. Four of the study sites were located between river kilometer 575 and 580 in a section of the river where fall Chinook salmon have not spawned since aerial surveys were initiated in the 1940s; four sites were located in the spawning reach (river kilometer [rkm] 590 to 603); and one site was located upstream of the spawning reach (rkm 605).

Connecting Tidal-fluvial Life Histories to Survival of McKenzie River Spring Chinook Salmon (Oncorhynchus Tshawytscha)

Connecting Tidal-fluvial Life Histories to Survival of McKenzie River Spring Chinook Salmon (Oncorhynchus Tshawytscha) PDF Author: Gordon W. Rose
Publisher:
ISBN:
Category : Chinook salmon
Languages : en
Pages : 111

Get Book Here

Book Description
Chinook salmon returns to the Columbia River basin have declined due to impacts of a growing human population, despite significant mitigation expenditures. Consequently, fisheries managers have become focused on recovery and long-term viability of at-risk populations. A viable population depends, in part, on the connectivity and quality of diverse habitat types salmon require to complete their anadromous life-cycles. The tidal-fluvial Columbia River estuary is one link in this chain of habitats, but was largely over-looked as important Chinook salmon habitat until recently. Habitat restoration projects are underway in the tidal Columbia River estuary with the goal of increasing survival benefits to juvenile Chinook salmon. However, knowledge gaps remain about stock-specific use of tidal-fluvial habitat and tracking these restoration efforts is largely subjective. This study has sought to quantify the importance of tidal-fluvial habitat for a critical population of Chinook salmon, from the McKenzie River in the upper Willamette River Basin. Using otolith micro-chemistry profile analysis, juvenile net growth in the tidal-fluvial Columbia River was back-calculated for 92 natural-origin McKenzie River Chinook salmon across outmigration years 2005 and 2006. All otoliths were sampled from McKenzie River adult salmon to draw inferences about the juvenile life histories of surviving spawners. Mean ± SD net growth in the tidal fluvial estuary for all years was 5.48 ± 5.81 mm for subyearlings and 7.43 ± 8.32mm for yearlings. Differences in mean net growth by juvenile life-history type were not significant despite a prevailing assumption that subyearlings rear longer in estuary habitat than yearlings. Emigration sizes and net-growth estimates were significantly greater for subyearlings in outmigration year 2005 than 2006; there was only suggestive evidence emigration sizes were greater for yearlings in outmigration year 2005 than 2006, and net-growth estimates were similar between years. Sixteen percent (15 of 92) of McKenzie Chinook salmon grew between 10 and 43 mm over approximately 25-100 days in the tidal-fluvial Columbia River. Extended rearing in tidal-fluvial habitat provided an alternate life-history pathway for some yearling (12), fingerling (one), and fry (two) migrants. Subyearlings with intermediate-rearing or migratory life history pathways had greater net growth in tidal-fluvial habitat during 2005 than 2006, and in 2005 environmental conditions were unfavorable to overall salmon productivity. Fixed effects linear regression models suggest tidal-fluvial habitat supports McKenzie Chinook salmon life-history diversity, growth, and size, and therefore likely contributes to population resilience.

Characterization of Estuary Use by Nisqually Hatchery Chinook Based on Otolith Analysis

Characterization of Estuary Use by Nisqually Hatchery Chinook Based on Otolith Analysis PDF Author: Angela Lind-Null
Publisher:
ISBN:
Category : Chinook salmon
Languages : en
Pages : 12

Get Book Here

Book Description


Utilization of a Spatial Decision-support Tool for the Restoration of Chinook Salmon in the Columbia River

Utilization of a Spatial Decision-support Tool for the Restoration of Chinook Salmon in the Columbia River PDF Author: Molly J. Good
Publisher:
ISBN:
Category : Chinook salmon
Languages : en
Pages : 44

Get Book Here

Book Description
Managers, policy-makers, and practitioners often utilize spatially-explicit decision-support tools for assistance and guidance in managing highly dynamic and spatially diverse environmental systems. Here I explore the use of the Landscape Planning Framework as an example of a decision-support tool that supports a systematic, landscape-based approach to fish habitat management in the Columbia River estuary. I identified the importance of landscape features or habitat attributes to the growth and survival of ocean-type, juvenile Chinook salmon (Oncorhynchus tshawytscha) and ranked them each on a scale from 1 (greatest importance) to 12 (least importance). I used these rankings to test the relative function of aquatic channel landscape features in identifying areas for potential restoration to benefit salmon stocks that rear in the estuary. In a series of five spatial trials I estimated the cumulative contribution of potential salmon habitat restoration areas by summing different combinations of rankings and grouping the ranking totals in equal-interval low (lowest potential restoration function), medium, and high (highest potential restoration function) categories. I calculated the abundance, length, area, and edge density of equal-interval categories, analyzed in the form of polygon layers, for purposes of comparison. Regardless of the combination of rankings and grouping totals, the equal-interval high category returned the lowest metric values. My results indicate that the set of sites characterized as areas of high possible restoration value is most constrained in the equal-interval high category. As a relatively new decision-support tool, the Landscape Planning Framework serves as a useful instrument for efficient management of an estuarine landscape to more effectively support its inhabitants.

Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus Tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007

Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus Tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 199

Get Book Here

Book Description
This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat suitability criteria to measured and modeled habitat data from the Snake River study areas. Channel morphology data from the Wanapum reference reach and the Snake River study areas were evaluated to identify geomorphically suitable fall Chinook salmon spawning habitat. The results of this study indicate that a majority of the Ice Harbor and Lower Granite study areas contain suitable fall Chinook salmon spawning habitat under existing hydrosystem operations. However, a large majority of the currently available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study areas is of low quality. The potential for increasing, through modifications to hydrosystem operations (i.e., minimum pool elevation of the next downstream dam), the quantity or quality of fall Chinook salmon spawning habitat appears to be limited. Estimates of the amount of potential fall Chinook salmon spawning habitat in the Ice Harbor study area decreased as the McNary Dam forebay elevation was lowered from normal to minimum pool elevation. Estimates of the amount of potential fall Chinook salmon spawning habitat in the Lower Granite study area increased as the Little Goose Dam forebay elevation was lowered from normal to minimum pool elevation; however, 97% of the available habitat was categorized within the range of lowest quality. In both the Ice Harbor and Lower Granite study areas, water velocity appears to be more of a limiting factor than water depth for fall Chinook salmon spawning habitat, with both study areas dominated by low-magnitude water velocity. The geomorphic suitability of both study areas appears to be compromised for fall Chinook salmon spawning habitat, with the Ice Harbor study area lacking significant bedforms along the longitudinal thalweg profile and the Lower Granite study area lacking cross-sectional topographic diversity. To increase the quantity of available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study area, modifications to hydroelectric dam operations beyond those evaluated in this study likely would be necessary. Modifications may include operational and structural changes, such as lowering downstream dam forebay elevations to less than minimum pool. There is a large amount of uncertainty as to whether or not such modifications could increase the quantity of available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study area. The results from this study provide some certainty that the quantity and quality of fall Chinook salmon spawning habitat within the lower Snake River are not likely to be increased within the existing hydroelectric dam operations.