Oriented Crystallization on Amorphous Substrates

Oriented Crystallization on Amorphous Substrates PDF Author: E.I. Givargizov
Publisher: Springer Science & Business Media
ISBN: 1489925600
Category : Technology & Engineering
Languages : en
Pages : 377

Get Book Here

Book Description
Present-day scienceand technology have become increasingly based on studies and applications of thin films. This is especiallytrue of solid-state physics, semiconduc tor electronics, integrated optics, computer science, and the like. In these fields, it is necessary to use filmswith an ordered structure, especiallysingle-crystallinefilms, because physical phenomena and effects in such films are most reproducible. Also, active parts of semiconductor and other devices and circuits are created, as a rule, in single-crystal bodies. To date, single-crystallinefilms have been mainly epitaxial (or heteroepitaxial); i.e., they have been grown on a single-crystalline substrate, and principal trends, e.g., in the evolution of integrated circuits (lCs), have been based on continuing reduction in feature size and increase in the number of components per chip. However, as the size decreases into the submicrometer range, technological and physical limitations in integrated electronics become more and more severe. It is generally believed that a feature size of about 0.1um will have a crucial character. In other words, the present two-dimensional ICs are anticipated to reach their limit of minimization in the near future, and it is realized that further increase of packing density and/or functions might depend on three-dimensional integration. To solve the problem, techniques for preparation of single-crystalline films on arbitrary (including amorphous) substrates are essential.

Oriented Crystallization on Amorphous Substrates

Oriented Crystallization on Amorphous Substrates PDF Author: E.I. Givargizov
Publisher: Springer Science & Business Media
ISBN: 1489925600
Category : Technology & Engineering
Languages : en
Pages : 377

Get Book Here

Book Description
Present-day scienceand technology have become increasingly based on studies and applications of thin films. This is especiallytrue of solid-state physics, semiconduc tor electronics, integrated optics, computer science, and the like. In these fields, it is necessary to use filmswith an ordered structure, especiallysingle-crystallinefilms, because physical phenomena and effects in such films are most reproducible. Also, active parts of semiconductor and other devices and circuits are created, as a rule, in single-crystal bodies. To date, single-crystallinefilms have been mainly epitaxial (or heteroepitaxial); i.e., they have been grown on a single-crystalline substrate, and principal trends, e.g., in the evolution of integrated circuits (lCs), have been based on continuing reduction in feature size and increase in the number of components per chip. However, as the size decreases into the submicrometer range, technological and physical limitations in integrated electronics become more and more severe. It is generally believed that a feature size of about 0.1um will have a crucial character. In other words, the present two-dimensional ICs are anticipated to reach their limit of minimization in the near future, and it is realized that further increase of packing density and/or functions might depend on three-dimensional integration. To solve the problem, techniques for preparation of single-crystalline films on arbitrary (including amorphous) substrates are essential.

Proceedings of the Second Symposium on Defects in Silicon

Proceedings of the Second Symposium on Defects in Silicon PDF Author: W. Murray Bullis
Publisher:
ISBN:
Category : Semiconductors
Languages : en
Pages : 716

Get Book Here

Book Description


Principles of Vapor Deposition of Thin Films

Principles of Vapor Deposition of Thin Films PDF Author: Professor K.S. K.S Sree Harsha
Publisher: Elsevier
ISBN: 0080480314
Category : Technology & Engineering
Languages : en
Pages : 1173

Get Book Here

Book Description
The goal of producing devices that are smaller, faster, more functional, reproducible, reliable and economical has given thin film processing a unique role in technology.Principles of Vapor Deposition of Thin Films brings in to one place a diverse amount of scientific background that is considered essential to become knowledgeable in thin film depostition techniques. Its ultimate goal as a reference is to provide the foundation upon which thin film science and technological innovation are possible.* Offers detailed derivation of important formulae.* Thoroughly covers the basic principles of materials science that are important to any thin film preparation.* Careful attention to terminologies, concepts and definitions, as well as abundance of illustrations offer clear support for the text.

Growth of Crystals

Growth of Crystals PDF Author: N. N. Sheftal'
Publisher: Springer Science & Business Media
ISBN: 1461342562
Category : Science
Languages : en
Pages : 300

Get Book Here

Book Description
This tenth volume completes the first series of "Growth of Crystals," which began in 1957. The sources of the volumes are as follows: for Vol. I, the 1st All-Union Conference on Crystal Growth; for Vol. 3, the 2nd; and for Vols. 5 and 6, the 3rd; Vols. 7 and 8 reported the International Symposium on Crystal Growth at the Seventh International Crystallography Con gress, and Vol. 9 the 1969 symposium on crystal growth dedicated to E. S. Fedorov; Vols. 2, 4, and 10 did not originate in conferences. The main problem that largely occupied the conferences and symposia and also the inter mediate volumes was that of real crystal formation, as well as the relation of crystal growth theory to practical crystal production. This tenth volume, which completes this first series, is to a considerable extent a survey. It contains more extensive theoretical and experimental original papers, as well as some shorter papers dealing with particular but important aspects of real crystal formation. The volume opens with a paper by V. V. Voronkov, which deals with the structure of crystal surface in Kossel's model. The model as proposed by Kossel is extremely simple. It deals qualitatively with the basic trends in the growth of an idealized crystal in its own va por at absolute zero, and naturally does not allow one to perform quantitative studies on com plex real processes.

Modern Crystallography III

Modern Crystallography III PDF Author: A.A. Chernov
Publisher: Springer Science & Business Media
ISBN: 3642818358
Category : Technology & Engineering
Languages : en
Pages : 538

Get Book Here

Book Description
Early in this century, the newly discovered x-ray diffraction by crystals made a complete change in crystallography and in the whole science of the atomic structure of matter, thus giving a new impetus to the development of solid-state physics. Crystallographic methods, pri marily x-ray diffraction analysis, penetrated into materials sciences, mol ecular physics, and chemistry, and also into many other branches of science. Later, electron and neutron diffraction structure analyses be came important since they not only complement x-ray data, but also supply new information on the atomic and the real structure of crystals. Electron microscopy and other modern methods of investigating mat ter-optical, electronic paramagnetic, nuclear magnetic, and other res onance techniques-yield a large amount of information on the atomic, electronic, and real crystal structures. Crystal physics has also undergone vigorous development. Many re markable phenomena have been discovered in crystals and then found various practical applications. Other important factors promoting the development of crystallog raphy were the elaboration of the theory of crystal growth (which brought crystallography closer to thermodynamics and physical chem istry) and the development of the various methods of growing synthetic crystals dictated by practical needs. Man-made crystals became increas ingly important for physical investigations, and they rapidly invaded technology. The production . of synthetic crystals made a tremendous impact on the traditional branches: the mechanical treatment of mate rials, precision instrument making, and the jewelry industry.

Nanomaterials Synthesis

Nanomaterials Synthesis PDF Author: Yasir Beeran Pottathara
Publisher: Elsevier
ISBN: 0128157526
Category : Technology & Engineering
Languages : en
Pages : 600

Get Book Here

Book Description
Nanomaterials Synthesis: Design, Fabrication and Applications combines the present and emerging trends of synthesis routes of nanomaterials with the incorporation of various technologies. The book covers the new trends and challenges in the synthesis and surface engineering of a wide range of nanomaterials, including emerging technologies used for their synthesis. Significant properties, safety and sustainability and environmental impacts of the synthesis routes are explored. This book is an important information source that will help materials scientists and engineers who want to learn more about how different classes of nanomaterials are designed. - Highlights recent developments in, and opportunities created by, new nanomaterials synthesis methods - Explains major synthesis techniques for different types of nanomaterials - Discusses the challenges of using a variety of synthesis methods

Polymer Morphology

Polymer Morphology PDF Author: Qipeng Guo
Publisher: John Wiley & Sons
ISBN: 1118452151
Category : Technology & Engineering
Languages : en
Pages : 472

Get Book Here

Book Description
With a focus on structure-property relationships, this book describes how polymer morphology affects properties and how scientists can modify them. The book covers structure development, theory, simulation, and processing; and discusses a broad range of techniques and methods. • Provides an up-to-date, comprehensive introduction to the principles and practices of polymer morphology • Illustrates major structure types, such as semicrystalline morphology, surface-induced polymer crystallization, phase separation, self-assembly, deformation, and surface topography • Covers a variety of polymers, such as homopolymers, block copolymers, polymer thin films, polymer blends, and polymer nanocomposites • Discusses a broad range of advanced and novel techniques and methods, like x-ray diffraction, thermal analysis, and electron microscopy and their applications in the morphology of polymer materials

Handbook of Crystal Growth

Handbook of Crystal Growth PDF Author: Tom Kuech
Publisher: Elsevier
ISBN: 0444633057
Category : Science
Languages : en
Pages : 1384

Get Book Here

Book Description
Volume IIIA Basic TechniquesHandbook of Crystal Growth, Second Edition Volume IIIA (Basic Techniques), edited by chemical and biological engineering expert Thomas F. Kuech, presents the underpinning science and technology associated with epitaxial growth as well as highlighting many of the chief and burgeoning areas for epitaxial growth. Volume IIIA focuses on major growth techniques which are used both in the scientific investigation of crystal growth processes and commercial development of advanced epitaxial structures. Techniques based on vacuum deposition, vapor phase epitaxy, and liquid and solid phase epitaxy are presented along with new techniques for the development of three-dimensional nano-and micro-structures.Volume IIIB Materials, Processes, and TechnologyHandbook of Crystal Growth, Second Edition Volume IIIB (Materials, Processes, and Technology), edited by chemical and biological engineering expert Thomas F. Kuech, describes both specific techniques for epitaxial growth as well as an array of materials-specific growth processes. The volume begins by presenting variations on epitaxial growth process where the kinetic processes are used to develop new types of materials at low temperatures. Optical and physical characterizations of epitaxial films are discussed for both in situ and exit to characterization of epitaxial materials. The remainder of the volume presents both the epitaxial growth processes associated with key technology materials as well as unique structures such as monolayer and two dimensional materials.Volume IIIA Basic Techniques - Provides an introduction to the chief epitaxial growth processes and the underpinning scientific concepts used to understand and develop new processes. - Presents new techniques and technologies for the development of three-dimensional structures such as quantum dots, nano-wires, rods and patterned growth - Introduces and utilizes basic concepts of thermodynamics, transport, and a wide cross-section of kinetic processes which form the atomic level text of growth process Volume IIIB Materials, Processes, and Technology - Describes atomic level epitaxial deposition and other low temperature growth techniques - Presents both the development of thermal and lattice mismatched streams as the techniques used to characterize the structural properties of these materials - Presents in-depth discussion of the epitaxial growth techniques associated with silicone silicone-based materials, compound semiconductors, semiconducting nitrides, and refractory materials

Handbook of Crystal Growth

Handbook of Crystal Growth PDF Author: Tatau Nishinaga
Publisher: Elsevier
ISBN: 0444593764
Category : Science
Languages : en
Pages : 1216

Get Book Here

Book Description
Volume IAHandbook of Crystal Growth, 2nd Edition (Fundamentals: Thermodynamics and Kinetics) Volume IA addresses the present status of crystal growth science, and provides scientific tools for the following volumes: Volume II (Bulk Crystal Growth) and III (Thin Film Growth and Epitaxy). Volume IA highlights thermodynamics and kinetics. After historical introduction of the crystal growth, phase equilibria, defect thermodynamics, stoichiometry, and shape of crystal and structure of melt are described. Then, the most fundamental and basic aspects of crystal growth are presented, along with the theories of nucleation and growth kinetics. In addition, the simulations of crystal growth by Monte Carlo, ab initio-based approach and colloidal assembly are thoroughly investigated. Volume IBHandbook of Crystal Growth, 2nd Edition (Fundamentals: Transport and Stability) Volume IB discusses pattern formation, a typical problem in crystal growth. In addition, an introduction to morphological stability is given and the phase-field model is explained with comparison to experiments. The field of nanocrystal growth is rapidly expanding and here the growth from vapor is presented as an example. For the advancement of life science, the crystal growth of protein and other biological molecules is indispensable and biological crystallization in nature gives many hints for their crystal growth. Another subject discussed is pharmaceutical crystal growth. To understand the crystal growth, in situ observation is extremely powerful. The observation techniques are demonstrated. Volume IA - Explores phase equilibria, defect thermodynamics of Si, stoichiometry of oxides and atomistic structure of melt and alloys - Explains basic ideas to understand crystal growth, equilibrium shape of crystal, rough-smooth transition of step and surface, nucleation and growth mechanisms - Focuses on simulation of crystal growth by classical Monte Carlo, ab-initio based quantum mechanical approach, kinetic Monte Carlo and phase field model. Controlled colloidal assembly is presented as an experimental model for crystal growth. Volume IIB - Describes morphological stability theory and phase-field model and comparison to experiments of dendritic growth - Presents nanocrystal growth in vapor as well as protein crystal growth and biological crystallization - Interprets mass production of pharmaceutical crystals to be understood as ordinary crystal growth and explains crystallization of chiral molecules - Demonstrates in situ observation of crystal growth in vapor, solution and melt on the ground and in space

Silicon-on-Insulator Technology: Materials to VLSI

Silicon-on-Insulator Technology: Materials to VLSI PDF Author: J.-P. Colinge
Publisher: Springer Science & Business Media
ISBN: 1441991069
Category : Technology & Engineering
Languages : en
Pages : 375

Get Book Here

Book Description
Silicon-on-Insulator Technology: Materials to VLSI, Third Edition, retraces the evolution of SOI materials, devices and circuits over a period of roughly twenty years. Twenty years of progress, research and development during which SOI material fabrication techniques have been born and abandoned, devices have been invented and forgotten, but, most importantly, twenty years during which SOI Technology has little by little proven it could outperform bulk silicon in every possible way. The turn of the century turned out to be a milestone for the semiconductor industry, as high-quality SOI wafers suddenly became available in large quantities. From then on, it took only a few years to witness the use of SOI technology in a wealth of applications ranging from audio amplifiers and wristwatches to 64-bit microprocessors. This book presents a complete and state-of-the-art review of SOI materials, devices and circuits. SOI fabrication and characterization techniques, SOI CMOS processing, and the physics of the SOI MOSFET receive an in-depth analysis.