Author: Daniel S. Brooks
Publisher:
ISBN: 9780262366199
Category : Biological systems
Languages : en
Pages :
Book Description
"This book addresses basic and advanced questions surrounding the idea of levels or organization in the biological sciences"--
Levels of Organization in the Biological Sciences
Author: Daniel S. Brooks
Publisher:
ISBN: 9780262366199
Category : Biological systems
Languages : en
Pages :
Book Description
"This book addresses basic and advanced questions surrounding the idea of levels or organization in the biological sciences"--
Publisher:
ISBN: 9780262366199
Category : Biological systems
Languages : en
Pages :
Book Description
"This book addresses basic and advanced questions surrounding the idea of levels or organization in the biological sciences"--
Concepts of Biology
Author: Samantha Fowler
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 1409
Book Description
Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 1409
Book Description
Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
Self-Organization in Biological Systems
Author: Scott Camazine
Publisher: Princeton University Press
ISBN: 0691212929
Category : Science
Languages : en
Pages : 548
Book Description
The synchronized flashing of fireflies at night. The spiraling patterns of an aggregating slime mold. The anastomosing network of army-ant trails. The coordinated movements of a school of fish. Researchers are finding in such patterns--phenomena that have fascinated naturalists for centuries--a fertile new approach to understanding biological systems: the study of self-organization. This book, a primer on self-organization in biological systems for students and other enthusiasts, introduces readers to the basic concepts and tools for studying self-organization and then examines numerous examples of self-organization in the natural world. Self-organization refers to diverse pattern formation processes in the physical and biological world, from sand grains assembling into rippled dunes to cells combining to create highly structured tissues to individual insects working to create sophisticated societies. What these diverse systems hold in common is the proximate means by which they acquire order and structure. In self-organizing systems, pattern at the global level emerges solely from interactions among lower-level components. Remarkably, even very complex structures result from the iteration of surprisingly simple behaviors performed by individuals relying on only local information. This striking conclusion suggests important lines of inquiry: To what degree is environmental rather than individual complexity responsible for group complexity? To what extent have widely differing organisms adopted similar, convergent strategies of pattern formation? How, specifically, has natural selection determined the rules governing interactions within biological systems? Broad in scope, thorough yet accessible, this book is a self-contained introduction to self-organization and complexity in biology--a field of study at the forefront of life sciences research.
Publisher: Princeton University Press
ISBN: 0691212929
Category : Science
Languages : en
Pages : 548
Book Description
The synchronized flashing of fireflies at night. The spiraling patterns of an aggregating slime mold. The anastomosing network of army-ant trails. The coordinated movements of a school of fish. Researchers are finding in such patterns--phenomena that have fascinated naturalists for centuries--a fertile new approach to understanding biological systems: the study of self-organization. This book, a primer on self-organization in biological systems for students and other enthusiasts, introduces readers to the basic concepts and tools for studying self-organization and then examines numerous examples of self-organization in the natural world. Self-organization refers to diverse pattern formation processes in the physical and biological world, from sand grains assembling into rippled dunes to cells combining to create highly structured tissues to individual insects working to create sophisticated societies. What these diverse systems hold in common is the proximate means by which they acquire order and structure. In self-organizing systems, pattern at the global level emerges solely from interactions among lower-level components. Remarkably, even very complex structures result from the iteration of surprisingly simple behaviors performed by individuals relying on only local information. This striking conclusion suggests important lines of inquiry: To what degree is environmental rather than individual complexity responsible for group complexity? To what extent have widely differing organisms adopted similar, convergent strategies of pattern formation? How, specifically, has natural selection determined the rules governing interactions within biological systems? Broad in scope, thorough yet accessible, this book is a self-contained introduction to self-organization and complexity in biology--a field of study at the forefront of life sciences research.
Self-Organization in Complex Ecosystems. (MPB-42)
Author: Ricard V. Solé
Publisher: Princeton University Press
ISBN: 0691070407
Category : Science
Languages : en
Pages : 391
Book Description
Describing a theoretical view of ecosystems based on how they self-organise to produce complex patterns, this book focuses on very simple models that despite their simplicity encapsulate fundamental properties of how ecosystems work.
Publisher: Princeton University Press
ISBN: 0691070407
Category : Science
Languages : en
Pages : 391
Book Description
Describing a theoretical view of ecosystems based on how they self-organise to produce complex patterns, this book focuses on very simple models that despite their simplicity encapsulate fundamental properties of how ecosystems work.
Principles of Biology
Author: Lisa Bartee
Publisher:
ISBN: 9781636350417
Category :
Languages : en
Pages :
Book Description
The Principles of Biology sequence (BI 211, 212 and 213) introduces biology as a scientific discipline for students planning to major in biology and other science disciplines. Laboratories and classroom activities introduce techniques used to study biological processes and provide opportunities for students to develop their ability to conduct research.
Publisher:
ISBN: 9781636350417
Category :
Languages : en
Pages :
Book Description
The Principles of Biology sequence (BI 211, 212 and 213) introduces biology as a scientific discipline for students planning to major in biology and other science disciplines. Laboratories and classroom activities introduce techniques used to study biological processes and provide opportunities for students to develop their ability to conduct research.
Biological Autonomy
Author: Alvaro Moreno
Publisher: Springer
ISBN: 9401798370
Category : Philosophy
Languages : en
Pages : 249
Book Description
Since Darwin, Biology has been framed on the idea of evolution by natural selection, which has profoundly influenced the scientific and philosophical comprehension of biological phenomena and of our place in Nature. This book argues that contemporary biology should progress towards and revolve around an even more fundamental idea, that of autonomy. Biological autonomy describes living organisms as organised systems, which are able to self-produce and self-maintain as integrated entities, to establish their own goals and norms, and to promote the conditions of their existence through their interactions with the environment. Topics covered in this book include organisation and biological emergence, organisms, agency, levels of autonomy, cognition, and a look at the historical dimension of autonomy. The current development of scientific investigations on autonomous organisation calls for a theoretical and philosophical analysis. This can contribute to the elaboration of an original understanding of life - including human life - on Earth, opening new perspectives and enabling fecund interactions with other existing theories and approaches. This book takes up the challenge.
Publisher: Springer
ISBN: 9401798370
Category : Philosophy
Languages : en
Pages : 249
Book Description
Since Darwin, Biology has been framed on the idea of evolution by natural selection, which has profoundly influenced the scientific and philosophical comprehension of biological phenomena and of our place in Nature. This book argues that contemporary biology should progress towards and revolve around an even more fundamental idea, that of autonomy. Biological autonomy describes living organisms as organised systems, which are able to self-produce and self-maintain as integrated entities, to establish their own goals and norms, and to promote the conditions of their existence through their interactions with the environment. Topics covered in this book include organisation and biological emergence, organisms, agency, levels of autonomy, cognition, and a look at the historical dimension of autonomy. The current development of scientific investigations on autonomous organisation calls for a theoretical and philosophical analysis. This can contribute to the elaboration of an original understanding of life - including human life - on Earth, opening new perspectives and enabling fecund interactions with other existing theories and approaches. This book takes up the challenge.
Scanning Electron Microscopy in BIOLOGY
Author: R.G. Kessel
Publisher: Springer Science & Business Media
ISBN: 3642808344
Category : Science
Languages : en
Pages : 330
Book Description
In the continuing quest to explore structure and to relate struc tural organization to functional significance, the scientist has developed a vast array of microscopes. The scanning electron microscope (SEM) represents a recent and important advance in the development of useful tools for investigating the structural organization of matter. Recent progress in both technology and methodology has resulted in numerous biological publications in which the SEM has been utilized exclusively or in connection with other types of microscopes to reveal surface as well as intracellular details in plant and animal tissues and organs. Because of the resolution and depth of focus presented in the SEM photograph when compared, for example, with that in the light microscope photographs, images recorded with the SEM have widely circulated in newspapers, periodicals and scientific journals in recent times. Considering the utility and present status of scanning electron microscopy, it seemed to us to be a particularly appropriate time to assemble a text-atlas dealing with biological applications of scanning electron microscopy so that such information might be presented to the student and to others not yet familiar with its capabilities in teaching and research. The major goal of this book, therefore, has been to assemble material that would be useful to those students beginning their study of botany or zoo logy, as well as to beginning medical students and students in advanced biology courses.
Publisher: Springer Science & Business Media
ISBN: 3642808344
Category : Science
Languages : en
Pages : 330
Book Description
In the continuing quest to explore structure and to relate struc tural organization to functional significance, the scientist has developed a vast array of microscopes. The scanning electron microscope (SEM) represents a recent and important advance in the development of useful tools for investigating the structural organization of matter. Recent progress in both technology and methodology has resulted in numerous biological publications in which the SEM has been utilized exclusively or in connection with other types of microscopes to reveal surface as well as intracellular details in plant and animal tissues and organs. Because of the resolution and depth of focus presented in the SEM photograph when compared, for example, with that in the light microscope photographs, images recorded with the SEM have widely circulated in newspapers, periodicals and scientific journals in recent times. Considering the utility and present status of scanning electron microscopy, it seemed to us to be a particularly appropriate time to assemble a text-atlas dealing with biological applications of scanning electron microscopy so that such information might be presented to the student and to others not yet familiar with its capabilities in teaching and research. The major goal of this book, therefore, has been to assemble material that would be useful to those students beginning their study of botany or zoo logy, as well as to beginning medical students and students in advanced biology courses.
Design in Nature
Author: Adrian Bejan
Publisher: Anchor
ISBN: 0307744345
Category : Science
Languages : en
Pages : 306
Book Description
In this groundbreaking book, Adrian Bejan takes the recurring patterns in nature—trees, tributaries, air passages, neural networks, and lightning bolts—and reveals how a single principle of physics, the constructal law, accounts for the evolution of these and many other designs in our world. Everything—from biological life to inanimate systems—generates shape and structure and evolves in a sequence of ever-improving designs in order to facilitate flow. River basins, cardiovascular systems, and bolts of lightning are very efficient flow systems to move a current—of water, blood, or electricity. Likewise, the more complex architecture of animals evolve to cover greater distance per unit of useful energy, or increase their flow across the land. Such designs also appear in human organizations, like the hierarchical “flowcharts” or reporting structures in corporations and political bodies. All are governed by the same principle, known as the constructal law, and configure and reconfigure themselves over time to flow more efficiently. Written in an easy style that achieves clarity without sacrificing complexity, Design in Nature is a paradigm-shifting book that will fundamentally transform our understanding of the world around us.
Publisher: Anchor
ISBN: 0307744345
Category : Science
Languages : en
Pages : 306
Book Description
In this groundbreaking book, Adrian Bejan takes the recurring patterns in nature—trees, tributaries, air passages, neural networks, and lightning bolts—and reveals how a single principle of physics, the constructal law, accounts for the evolution of these and many other designs in our world. Everything—from biological life to inanimate systems—generates shape and structure and evolves in a sequence of ever-improving designs in order to facilitate flow. River basins, cardiovascular systems, and bolts of lightning are very efficient flow systems to move a current—of water, blood, or electricity. Likewise, the more complex architecture of animals evolve to cover greater distance per unit of useful energy, or increase their flow across the land. Such designs also appear in human organizations, like the hierarchical “flowcharts” or reporting structures in corporations and political bodies. All are governed by the same principle, known as the constructal law, and configure and reconfigure themselves over time to flow more efficiently. Written in an easy style that achieves clarity without sacrificing complexity, Design in Nature is a paradigm-shifting book that will fundamentally transform our understanding of the world around us.
Vital Forces, Teleology and Organization
Author: Andrea Gambarotto
Publisher: Springer
ISBN: 3319654152
Category : Philosophy
Languages : en
Pages : 163
Book Description
This book offers a comprehensive account of vitalism and the Romantic philosophy of nature. The author explores the rise of biology as a unified science in Germany by reconstructing the history of the notion of “vital force,” starting from the mid-eighteenth through the early nineteenth century. Further, he argues that Romantic Naturphilosophie played a crucial role in the rise of biology in Germany, especially thanks to its treatment of teleology. In fact, both post-Kantian philosophers and naturalists were guided by teleological principles in defining the object of biological research. The book begins by considering the problem of generation, focusing on the debate over the notion of “formative force.” Readers are invited to engage with the epistemological status of this formative force, i.e. the question of the principle behind organization. The second chapter provides a reconstruction of the physiology of vital forces as it was elaborated in the mid- to late-eighteenth century by the group of physicians and naturalists known as the “Göttingen School.” Readers are shown how these authors developed an understanding of the animal kingdom as a graded series of organisms with increasing functional complexity. Chapter three tracks the development of such framework in Romantic Naturphilosophie. The author introduces the reader to the problem of classification, showing how Romantic philosophers of nature regarded classification as articulated by a unified plan that connects all living forms with one another, relying on the idea of living nature as a universal organism. In the closing chapter, this analysis shows how the three instances of pre-biological discourse on living beings – theory of generation, physiology and natural history – converged to form the consolidated disciplinary matrix of a general biology. The book offers an insightful read for all scholars interested in classical German philosophy, especially those researching the philosophy of nature, as well as the history and philosophy of biology.
Publisher: Springer
ISBN: 3319654152
Category : Philosophy
Languages : en
Pages : 163
Book Description
This book offers a comprehensive account of vitalism and the Romantic philosophy of nature. The author explores the rise of biology as a unified science in Germany by reconstructing the history of the notion of “vital force,” starting from the mid-eighteenth through the early nineteenth century. Further, he argues that Romantic Naturphilosophie played a crucial role in the rise of biology in Germany, especially thanks to its treatment of teleology. In fact, both post-Kantian philosophers and naturalists were guided by teleological principles in defining the object of biological research. The book begins by considering the problem of generation, focusing on the debate over the notion of “formative force.” Readers are invited to engage with the epistemological status of this formative force, i.e. the question of the principle behind organization. The second chapter provides a reconstruction of the physiology of vital forces as it was elaborated in the mid- to late-eighteenth century by the group of physicians and naturalists known as the “Göttingen School.” Readers are shown how these authors developed an understanding of the animal kingdom as a graded series of organisms with increasing functional complexity. Chapter three tracks the development of such framework in Romantic Naturphilosophie. The author introduces the reader to the problem of classification, showing how Romantic philosophers of nature regarded classification as articulated by a unified plan that connects all living forms with one another, relying on the idea of living nature as a universal organism. In the closing chapter, this analysis shows how the three instances of pre-biological discourse on living beings – theory of generation, physiology and natural history – converged to form the consolidated disciplinary matrix of a general biology. The book offers an insightful read for all scholars interested in classical German philosophy, especially those researching the philosophy of nature, as well as the history and philosophy of biology.
Systematics and the Origin of Species
Author: National Academy of Sciences
Publisher: National Academies Press
ISBN: 0309165105
Category : Science
Languages : en
Pages : 382
Book Description
In December 2004, the National Academy of Sciences sponsored a colloquium on "Systematics and the Origin of Species" to celebrate Ernst Mayr's 100th anniversary and to explore current knowledge concerning the origin of species. In 1942, Ernst Mayr, one of the twentieth century's greatest scientists, published Systematics and the Origin of Species, a seminal book of the modern theory of evolution, where he advanced the significance of population variation in the understanding of evolutionary process and the origin of new species. Mayr formulated the transition from Linnaeus's static species concept to the dynamic species concept of the modern theory of evolution and emphasized the species as a community of populations, the role of reproductive isolation, and the ecological interactions between species. In addition to a preceding essay by Edward O. Wilson, this book includes the 16 papers presented by distinguished evolutionists at the colloquium. The papers are organized into sections covering the origins of species barriers, the processes of species divergence, the nature of species, the meaning of "species," and genomic approaches for understanding diversity and speciation.
Publisher: National Academies Press
ISBN: 0309165105
Category : Science
Languages : en
Pages : 382
Book Description
In December 2004, the National Academy of Sciences sponsored a colloquium on "Systematics and the Origin of Species" to celebrate Ernst Mayr's 100th anniversary and to explore current knowledge concerning the origin of species. In 1942, Ernst Mayr, one of the twentieth century's greatest scientists, published Systematics and the Origin of Species, a seminal book of the modern theory of evolution, where he advanced the significance of population variation in the understanding of evolutionary process and the origin of new species. Mayr formulated the transition from Linnaeus's static species concept to the dynamic species concept of the modern theory of evolution and emphasized the species as a community of populations, the role of reproductive isolation, and the ecological interactions between species. In addition to a preceding essay by Edward O. Wilson, this book includes the 16 papers presented by distinguished evolutionists at the colloquium. The papers are organized into sections covering the origins of species barriers, the processes of species divergence, the nature of species, the meaning of "species," and genomic approaches for understanding diversity and speciation.