Author: Istvan Gaal
Publisher: Springer Science & Business Media
ISBN: 1461200857
Category : Mathematics
Languages : en
Pages : 192
Book Description
Work examines the latest algorithms and tools to solve classical types of diophantine equations.; Unique book---closest competitor, Smart, Cambridge, does not treat index form equations.; Author is a leading researcher in the field of computational algebraic number theory.; The text is illustrated with several tables of various number fields, including their data on power integral bases.; Several interesting properties of number fields are examined.; Some infinite parametric families of fields are also considered as well as the resolution of the corresponding infinite parametric families of diophantine equations.
Diophantine Equations and Power Integral Bases
Author: Istvan Gaal
Publisher: Springer Science & Business Media
ISBN: 1461200857
Category : Mathematics
Languages : en
Pages : 192
Book Description
Work examines the latest algorithms and tools to solve classical types of diophantine equations.; Unique book---closest competitor, Smart, Cambridge, does not treat index form equations.; Author is a leading researcher in the field of computational algebraic number theory.; The text is illustrated with several tables of various number fields, including their data on power integral bases.; Several interesting properties of number fields are examined.; Some infinite parametric families of fields are also considered as well as the resolution of the corresponding infinite parametric families of diophantine equations.
Publisher: Springer Science & Business Media
ISBN: 1461200857
Category : Mathematics
Languages : en
Pages : 192
Book Description
Work examines the latest algorithms and tools to solve classical types of diophantine equations.; Unique book---closest competitor, Smart, Cambridge, does not treat index form equations.; Author is a leading researcher in the field of computational algebraic number theory.; The text is illustrated with several tables of various number fields, including their data on power integral bases.; Several interesting properties of number fields are examined.; Some infinite parametric families of fields are also considered as well as the resolution of the corresponding infinite parametric families of diophantine equations.
Contemporary Developments In Finite Fields And Applications
Author: Gove Effinger
Publisher: World Scientific
ISBN: 9814719277
Category : Mathematics
Languages : en
Pages : 373
Book Description
The volume is a collection of 20 refereed articles written in connection with lectures presented at the 12th International Conference on Finite Fields and Their Applications ('Fq12') at Skidmore College in Saratoga Springs, NY in July 2015. Finite fields are central to modern cryptography and secure digital communication, and hence must evolve rapidly to keep pace with new technologies. Topics in this volume include cryptography, coding theory, structure of finite fields, algorithms, curves over finite fields, and further applications.Contributors will include: Antoine Joux (Fondation Partenariale de l'UPMC, France); Gary Mullen (Penn State University, USA); Gohar Kyureghyan (Otto-von-Guericke Universität, Germany); Gary McGuire (University College Dublin, Ireland); Michel Lavrauw (Università degli Studi di Padova, Italy); Kirsten Eisentraeger (Penn State University, USA); Renate Scheidler (University of Calgary, Canada); Michael Zieve (University of Michigan, USA).
Publisher: World Scientific
ISBN: 9814719277
Category : Mathematics
Languages : en
Pages : 373
Book Description
The volume is a collection of 20 refereed articles written in connection with lectures presented at the 12th International Conference on Finite Fields and Their Applications ('Fq12') at Skidmore College in Saratoga Springs, NY in July 2015. Finite fields are central to modern cryptography and secure digital communication, and hence must evolve rapidly to keep pace with new technologies. Topics in this volume include cryptography, coding theory, structure of finite fields, algorithms, curves over finite fields, and further applications.Contributors will include: Antoine Joux (Fondation Partenariale de l'UPMC, France); Gary Mullen (Penn State University, USA); Gohar Kyureghyan (Otto-von-Guericke Universität, Germany); Gary McGuire (University College Dublin, Ireland); Michel Lavrauw (Università degli Studi di Padova, Italy); Kirsten Eisentraeger (Penn State University, USA); Renate Scheidler (University of Calgary, Canada); Michael Zieve (University of Michigan, USA).
Diophantine Equations and Power Integral Bases
Author: István Gaál
Publisher: Springer Nature
ISBN: 3030238652
Category : Mathematics
Languages : en
Pages : 335
Book Description
Work examines the latest algorithms and tools to solve classical types of diophantine equations.; Unique book---closest competitor, Smart, Cambridge, does not treat index form equations.; Author is a leading researcher in the field of computational algebraic number theory.; The text is illustrated with several tables of various number fields, including their data on power integral bases.; Several interesting properties of number fields are examined.; Some infinite parametric families of fields are also considered as well as the resolution of the corresponding infinite parametric families of diophantine equations.
Publisher: Springer Nature
ISBN: 3030238652
Category : Mathematics
Languages : en
Pages : 335
Book Description
Work examines the latest algorithms and tools to solve classical types of diophantine equations.; Unique book---closest competitor, Smart, Cambridge, does not treat index form equations.; Author is a leading researcher in the field of computational algebraic number theory.; The text is illustrated with several tables of various number fields, including their data on power integral bases.; Several interesting properties of number fields are examined.; Some infinite parametric families of fields are also considered as well as the resolution of the corresponding infinite parametric families of diophantine equations.
Number Theory
Author: Kalman Gyoery
Publisher: Walter de Gruyter
ISBN: 3110809796
Category : Mathematics
Languages : en
Pages : 617
Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Publisher: Walter de Gruyter
ISBN: 3110809796
Category : Mathematics
Languages : en
Pages : 617
Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Algorithmic Number Theory
Author: Henri Cohen
Publisher: Springer Science & Business Media
ISBN: 9783540615811
Category : Computers
Languages : en
Pages : 422
Book Description
This book constitutes the refereed post-conference proceedings of the Second International Algorithmic Number Theory Symposium, ANTS-II, held in Talence, France in May 1996. The 35 revised full papers included in the book were selected from a variety of submissions. They cover a broad spectrum of topics and report state-of-the-art research results in computational number theory and complexity theory. Among the issues addressed are number fields computation, Abelian varieties, factoring algorithms, finite fields, elliptic curves, algorithm complexity, lattice theory, and coding.
Publisher: Springer Science & Business Media
ISBN: 9783540615811
Category : Computers
Languages : en
Pages : 422
Book Description
This book constitutes the refereed post-conference proceedings of the Second International Algorithmic Number Theory Symposium, ANTS-II, held in Talence, France in May 1996. The 35 revised full papers included in the book were selected from a variety of submissions. They cover a broad spectrum of topics and report state-of-the-art research results in computational number theory and complexity theory. Among the issues addressed are number fields computation, Abelian varieties, factoring algorithms, finite fields, elliptic curves, algorithm complexity, lattice theory, and coding.
A Dynamical Perspective on the ɸ4 Model
Author: Panayotis G. Kevrekidis
Publisher: Springer
ISBN: 3030118398
Category : Science
Languages : en
Pages : 328
Book Description
This book presents a careful selection of the most important developments of the \phi^4 model, offering a judicious summary of this model with a view to future prospects and the challenges ahead. Over the past four decades, the \phi^4 model has been the basis for a broad array of developments in the physics and mathematics of nonlinear waves. From kinks to breathers, from continuum media to discrete lattices, from collisions of solitary waves to spectral properties, and from deterministic to stochastic models of \phi^4 (and \phi^6, \phi^8, \phi^12 variants more recently), this dynamical model has served as an excellent test bed for formulating and testing the ideas of nonlinear science and solitary waves.
Publisher: Springer
ISBN: 3030118398
Category : Science
Languages : en
Pages : 328
Book Description
This book presents a careful selection of the most important developments of the \phi^4 model, offering a judicious summary of this model with a view to future prospects and the challenges ahead. Over the past four decades, the \phi^4 model has been the basis for a broad array of developments in the physics and mathematics of nonlinear waves. From kinks to breathers, from continuum media to discrete lattices, from collisions of solitary waves to spectral properties, and from deterministic to stochastic models of \phi^4 (and \phi^6, \phi^8, \phi^12 variants more recently), this dynamical model has served as an excellent test bed for formulating and testing the ideas of nonlinear science and solitary waves.
Collected Mathematical Papers: Associative algebras and Riemann matrices
Author: Abraham Adrian Albert
Publisher: American Mathematical Soc.
ISBN: 9780821870556
Category : Associative algebras
Languages : en
Pages : 824
Book Description
This book contains the collected works of A. Adrian Albert, a leading algebraist of the twentieth century. Albert made many important contributions to the theory of the Brauer group and central simple algeras, Riemann matrices, nonassociative algebras and other topics. Part 1 focuses on associative algebras and Riemann matrices part 2 on nonassociative algebras and miscellany. Because much of Albert's work remains of vital interest in contemporary research, this volume will interst mathematicians in a variety of areas.
Publisher: American Mathematical Soc.
ISBN: 9780821870556
Category : Associative algebras
Languages : en
Pages : 824
Book Description
This book contains the collected works of A. Adrian Albert, a leading algebraist of the twentieth century. Albert made many important contributions to the theory of the Brauer group and central simple algeras, Riemann matrices, nonassociative algebras and other topics. Part 1 focuses on associative algebras and Riemann matrices part 2 on nonassociative algebras and miscellany. Because much of Albert's work remains of vital interest in contemporary research, this volume will interst mathematicians in a variety of areas.
Algorithmic Number Theory
Author: Claus Fieker
Publisher: Springer Science & Business Media
ISBN: 3540438637
Category : Computers
Languages : en
Pages : 526
Book Description
Self-organized criticality (SOC) has become a magic word in various scientific disciplines; it provides a framework for understanding complexity and scale invariance in systems showing irregular fluctuations. In the first 10 years after Per Bak and his co-workers presented their seminal idea, more than 2000 papers on this topic appeared. Seismology has been a field in earth sciences where the SOC concept has already deepened the understanding, but there seem to be much more examples in earth sciences where applying the SOC concept may be fruitful. After introducing the reader into the basics of fractals, chaos and SOC, the book presents established and new applications of SOC in earth sciences, namely earthquakes, forest fires, landslides and drainage networks.
Publisher: Springer Science & Business Media
ISBN: 3540438637
Category : Computers
Languages : en
Pages : 526
Book Description
Self-organized criticality (SOC) has become a magic word in various scientific disciplines; it provides a framework for understanding complexity and scale invariance in systems showing irregular fluctuations. In the first 10 years after Per Bak and his co-workers presented their seminal idea, more than 2000 papers on this topic appeared. Seismology has been a field in earth sciences where the SOC concept has already deepened the understanding, but there seem to be much more examples in earth sciences where applying the SOC concept may be fruitful. After introducing the reader into the basics of fractals, chaos and SOC, the book presents established and new applications of SOC in earth sciences, namely earthquakes, forest fires, landslides and drainage networks.
Theory of Commutative Fields
Author: Masayoshi Nagata
Publisher: American Mathematical Soc.
ISBN: 0821887661
Category : Mathematics
Languages : en
Pages : 271
Book Description
The theory of commutative fields is a fundamental area of mathematics, particularly in number theory, algebra, and algebraic geometry. However, few books provide sufficient treatment of this topic. The author aimed to provide an introduction to commutative fields that would be useful to those studying the topic for the first time as well as to those wishing a reference book. The book presents, with as few prerequisites as possible, all of the important and fundamental results on commutative fields. Each chapter ends with exercises, making the book suitable as a textbook for graduate courses or for independent study.
Publisher: American Mathematical Soc.
ISBN: 0821887661
Category : Mathematics
Languages : en
Pages : 271
Book Description
The theory of commutative fields is a fundamental area of mathematics, particularly in number theory, algebra, and algebraic geometry. However, few books provide sufficient treatment of this topic. The author aimed to provide an introduction to commutative fields that would be useful to those studying the topic for the first time as well as to those wishing a reference book. The book presents, with as few prerequisites as possible, all of the important and fundamental results on commutative fields. Each chapter ends with exercises, making the book suitable as a textbook for graduate courses or for independent study.
The Equidistribution of Lattice Shapes of Rings of Integers of Cubic, Quartic, and Quintic Number Fields
Author: Piper Harron
Publisher: Birkhäuser
ISBN: 9783319765310
Category : Mathematics
Languages : en
Pages :
Book Description
This book seeks to explain the author’s joint work with Manjul Bhargava in a fun and accessible way. On its face, the subject matter concerns properties of number fields, namely the shape (literally and mathematically) of their rings of integers. The result says essentially that the ring of integers of a random number field should not have any special symmetries when viewed as a lattice in real space. The proof requires a parametrization, a counting method, an understanding of conditions mod p, a way to isolate the things we actually want to count, and a volume calculation. This has all been presented to the experts in an eleven page paper. The real purpose of this book, then, is not to present the results and the proof, but to really attempt to explain not just the math but also the struggles, that go into the result.
Publisher: Birkhäuser
ISBN: 9783319765310
Category : Mathematics
Languages : en
Pages :
Book Description
This book seeks to explain the author’s joint work with Manjul Bhargava in a fun and accessible way. On its face, the subject matter concerns properties of number fields, namely the shape (literally and mathematically) of their rings of integers. The result says essentially that the ring of integers of a random number field should not have any special symmetries when viewed as a lattice in real space. The proof requires a parametrization, a counting method, an understanding of conditions mod p, a way to isolate the things we actually want to count, and a volume calculation. This has all been presented to the experts in an eleven page paper. The real purpose of this book, then, is not to present the results and the proof, but to really attempt to explain not just the math but also the struggles, that go into the result.