Ordering Phenomena in Rare-Earth Nickelate Heterostructures

Ordering Phenomena in Rare-Earth Nickelate Heterostructures PDF Author: Matthias Hepting
Publisher: Springer
ISBN: 3319605313
Category : Technology & Engineering
Languages : en
Pages : 159

Get Book Here

Book Description
This thesis presents an experimental study of ordering phenomena in rare-earth nickelate-based heterostructures by means of inelastic Raman light scattering and elastic resonant x-ray scattering (RXS). Further, it demonstrates that the amplitude ratio of magnetic moments at neighboring nickel sites can be accurately determined by RXS in combination with a correlated double cluster model, and controlled experimentally through structural pinning of the oxygen positions in the crystal lattice. The two key outcomes of the thesis are: (a) demonstrating full control over the charge/bond and spin order parameters in specifically designed praseodymium nickelate heterostructures and observation of a novel spin density wave phase in absence of the charge/bond order parameter, which confirms theoretical predictions of a spin density wave phase driven by spatial confinement of the conduction electrons; and (b) assessing the thickness-induced crossover between collinear and non-collinear spin structures in neodymium nickelate slabs, which is correctly predicted by drawing on density functional theory.

Ordering Phenomena in Rare-Earth Nickelate Heterostructures

Ordering Phenomena in Rare-Earth Nickelate Heterostructures PDF Author: Matthias Hepting
Publisher: Springer
ISBN: 3319605313
Category : Technology & Engineering
Languages : en
Pages : 159

Get Book Here

Book Description
This thesis presents an experimental study of ordering phenomena in rare-earth nickelate-based heterostructures by means of inelastic Raman light scattering and elastic resonant x-ray scattering (RXS). Further, it demonstrates that the amplitude ratio of magnetic moments at neighboring nickel sites can be accurately determined by RXS in combination with a correlated double cluster model, and controlled experimentally through structural pinning of the oxygen positions in the crystal lattice. The two key outcomes of the thesis are: (a) demonstrating full control over the charge/bond and spin order parameters in specifically designed praseodymium nickelate heterostructures and observation of a novel spin density wave phase in absence of the charge/bond order parameter, which confirms theoretical predictions of a spin density wave phase driven by spatial confinement of the conduction electrons; and (b) assessing the thickness-induced crossover between collinear and non-collinear spin structures in neodymium nickelate slabs, which is correctly predicted by drawing on density functional theory.

Controlling Collective Electronic States in Cuprates and Nickelates

Controlling Collective Electronic States in Cuprates and Nickelates PDF Author: Martin Bluschke
Publisher: Springer Nature
ISBN: 3030479021
Category : Science
Languages : en
Pages : 170

Get Book Here

Book Description
In this thesis chemical and epitaxial degrees of freedom are used to manipulate charge and spin ordering phenomena in two families of transition metal oxides, while taking advantage of state-of-the-art resonant x-ray scattering (RXS) methods to characterize their microscopic origin in a comprehensive manner. First, the relationship of charge density wave order to both magnetism and the "pseudogap" phenomenon is systematically examined as a function of charge-carrier doping and isovalent chemical substitution in single crystals of a copper oxide high-temperature superconductor. Then, in copper oxide thin films, an unusual three-dimensionally long-range-ordered charge density wave state is discovered, which persists to much higher temperatures than charge-ordered states in other high-temperature superconductors. By combining crystallographic and spectroscopic measurements, the origin of this phenomenon is traced to the epitaxial relationship with the underlying substrate. This discovery opens new perspectives for the investigation of charge order and its influence on the electronic properties of the cuprates. In a separate set of RXS experiments on superlattices with alternating nickel and dysprosium oxides, several temperature- and magnetic-field-induced magnetic phase transitions are discovered. These observations are explained in a model based on transfer of magnetic order and magneto-crystalline anisotropy between the Ni and Dy subsystems, thus establishing a novel model system for the interplay between transition-metal and rare-earth magnetism.

Phononic and Electronic Excitations in Complex Oxides Studied with Advanced Infrared and Raman Spectroscopy Techniques

Phononic and Electronic Excitations in Complex Oxides Studied with Advanced Infrared and Raman Spectroscopy Techniques PDF Author: Fryderyk Lyzwa
Publisher: Springer Nature
ISBN: 3031118669
Category : Technology & Engineering
Languages : en
Pages : 158

Get Book Here

Book Description
This PhD thesis reports on investigations of several oxide-based materials using advanced infrared and Raman spectroscopy techniques and in combination with external stimuli such as high magnetic or electric field, sptial confinement in thin film heterostructures and the radiation with UV light. This leads to new results in the fields of superconductivity, electronic polarization states and nanoscale phenomena. Among these, the observation of anomalous polar moments is of great relevance for understanding the electric-field-induced metal-to-insulator transistion; and the demonstration that confocal Raman spectroscopy of backfolded acoustic photons in metal-oxide multilayers can be used as a powerful characterization tool for monitoring their interface properties and layer thickness is an important technical development for the engineering of such functional oxide heterostructures.

Applications of Nanomaterials for Energy Storage Devices

Applications of Nanomaterials for Energy Storage Devices PDF Author: Amit Saxena
Publisher: CRC Press
ISBN: 1000782549
Category : Science
Languages : en
Pages : 279

Get Book Here

Book Description
Electrochemical energy storage devices are the prime interest of researchers and students. This book provides a comprehensive introduction to nanomaterials and their potential applications specifically for electrochemical devices (rechargeable batteries, supercapacitors and so forth) in a coherent and simple manner. It covers fundamental concepts of nanomaterials, chemical and physical methods of synthesis, properties, characterization methods, and related applications. Features: Introduces the evolution of nanoparticles in electrochemical energy storage devices. Provides the detailed information on step-by-step synthesis of nanoparticles. Discusses different characterization methods (structural, electrical, optical, and thermal). Includes the use of nanoparticles in various electrochemical devices. Aims to bridge the gap between the material synthesis and the real application. This book aims at Senior Undergraduate/Graduate students in Material Chemistry, Electrochemistry and Chemical Engineering, and Energy Storage.

Electronic and Structural Properties of LaNiO3-Based Heterostructures

Electronic and Structural Properties of LaNiO3-Based Heterostructures PDF Author: Jennifer Fowlie
Publisher: Springer
ISBN: 3030152383
Category : Technology & Engineering
Languages : en
Pages : 112

Get Book Here

Book Description
This thesis explores an amazing family of oxide compounds - the nickelates - known for their metal-to-insulator transition and, in the case of LaNiO3, to be a possible building block for designing a synthetic high Tc superconductor. Competition between various fascinating phases makes these materials very sensitive to external parameters and it is thus possible to dramatically tune their properties. This work on ultrathin LaNiO3 and the solid solution Nd1-xLaxNiO3 has important implications for the search for superconductivity in this class of materials.

Emergent Phenomena in Correlated Matter

Emergent Phenomena in Correlated Matter PDF Author: Eva Pavarini
Publisher: Forschungszentrum Jülich
ISBN: 3893368841
Category :
Languages : en
Pages : 562

Get Book Here

Book Description


Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides

Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides PDF Author: Chintamani Nagesa Ramachandra Rao
Publisher: World Scientific
ISBN: 9789810232764
Category : Science
Languages : en
Pages : 364

Get Book Here

Book Description
Metal oxides constitute one of the most amazing classes of materials with a wide range of properties. They exhibit a variety of phenomena, such as ferroelectricity, ferromagnetism and superconductivity. A new aspect of metal oxides -- colossal magnetoresistance exhibited by certain manganese oxides, in particular rare earth manganates of perovskite structure -- has received much attention in the last four years. Some of these oxides show 100% magnetoresistance and have much potential for technological applications. Previously this phenomenon was found only in layered and granular metallic materials. Studies of colossal magnetoresistance have led to the discovery of many other new phenomena and properties such as charge ordering and orbital ordering. In view of the importance of colossal magnetoresistance, charge ordering and related phenomena exhibited by oxides to the physics and chemistry of solid materials, it is necessary and timely to have a book dealing with these topics. This book begins with a review of the subject followed by contributions from a number of experts which cover the present status of the subject.

Spectroscopy of Complex Oxide Interfaces

Spectroscopy of Complex Oxide Interfaces PDF Author: Claudia Cancellieri
Publisher: Springer
ISBN: 3319749897
Category : Technology & Engineering
Languages : en
Pages : 326

Get Book Here

Book Description
This book summarizes the most recent and compelling experimental results for complex oxide interfaces. The results of this book were obtained with the cutting-edge photoemission technique at highest energy resolution. Due to their fascinating properties for new-generation electronic devices and the challenge of investigating buried regions, the book chiefly focuses on complex oxide interfaces. The crucial feature of exploring buried interfaces is the use of soft X-ray angle-resolved photoemission spectroscopy (ARPES) operating on the energy range of a few hundred eV to increase the photoelectron mean free path, enabling the photons to penetrate through the top layers – in contrast to conventional ultraviolet (UV)-ARPES techniques. The results presented here, achieved by different research groups around the world, are summarized in a clearly structured way and discussed in comparison with other photoemission spectroscopy techniques and other oxide materials. They are complemented and supported by the most recent theoretical calculations as well as results of complementary experimental techniques including electron transport and inelastic resonant X-ray scattering.

Methods of Quantum Field Theory in Statistical Physics

Methods of Quantum Field Theory in Statistical Physics PDF Author: A. A. Abrikosov
Publisher: Courier Corporation
ISBN: 0486140156
Category : Science
Languages : en
Pages : 383

Get Book Here

Book Description
This comprehensive introduction to the many-body theory was written by three renowned physicists and acclaimed by American Scientist as "a classic text on field theoretic methods in statistical physics."

Electronic Phase Transitions

Electronic Phase Transitions PDF Author: Yu.V. Kopaev
Publisher: Elsevier
ISBN: 0444600396
Category : Science
Languages : en
Pages : 353

Get Book Here

Book Description
Electronic Phase Transitions deals with topics, which are presently at the forefront of scientific research in modern solid-state theory. Anderson localization, which has fundamental implications in many areas of solid-state physics as well as spin glasses, with its influence on quite different research activities such as neural networks, are two examples that are reviewed in this book. The ab initio statistical mechanics of structural phase transitions is another prime example, where the interplay and connection of two unrelated disciplines of solid-state theory - first principle electronic structure calculations and critical phenomena - has given rise to impressive new insights. Clearly, there is more and more need for accurate, stable numerical simulations of models of interacting electrons, presently discussed with great vigor in connection with high-Tc superconductors where the superconducting transition is close to a magnetic transition, i.e. an antiferromagnetic spin structure. These topics and others are discussed and reviewed by leading experts in the field.