Author: Richard Dykstra
Publisher: Springer Science & Business Media
ISBN: 1461399408
Category : Mathematics
Languages : en
Pages : 305
Book Description
With support from the University of Iowa and the Office of Naval Research. a small conference on order restricted inference was held at the University of Iowa in Iowa City in April of 1981. There were twenty-one participants. mostly from the midwest. and eleven talks were presented. A highlight of the conference was a talk by D. J. Bartholomew on. "Reflections on the past and thoughts about the future. " The conference was especially valuable because it brought together researchers who were thinking about related problems. A small conference on a limited topic is one of the best ways to stimulate research and facilitate collaboration. Because of the success of the first conference. a second conference was organized and held in September of 1985. This second conference was made possible again by support from the Office of Naval Research under Department of the Navy Contract NOOOI4-85-0161 and the University of Iowa. There were thirty-five participants and twenty presentations on a wide variety of topics dealing with order restricted inference at the second conference. This volume is a collection of fourteen of those presentations. By collecting together and organizing the fundamental results in order restricted inference in Statistical Inference under Order Restrictions. R. E. Barlow. D. J. Bartholomew. J. M. Bremner and H. D. Brunk have done much to stimulate research in this area. and so we wish to express our gratitude to them first.
Advances in Order Restricted Statistical Inference
Author: Richard Dykstra
Publisher: Springer Science & Business Media
ISBN: 1461399408
Category : Mathematics
Languages : en
Pages : 305
Book Description
With support from the University of Iowa and the Office of Naval Research. a small conference on order restricted inference was held at the University of Iowa in Iowa City in April of 1981. There were twenty-one participants. mostly from the midwest. and eleven talks were presented. A highlight of the conference was a talk by D. J. Bartholomew on. "Reflections on the past and thoughts about the future. " The conference was especially valuable because it brought together researchers who were thinking about related problems. A small conference on a limited topic is one of the best ways to stimulate research and facilitate collaboration. Because of the success of the first conference. a second conference was organized and held in September of 1985. This second conference was made possible again by support from the Office of Naval Research under Department of the Navy Contract NOOOI4-85-0161 and the University of Iowa. There were thirty-five participants and twenty presentations on a wide variety of topics dealing with order restricted inference at the second conference. This volume is a collection of fourteen of those presentations. By collecting together and organizing the fundamental results in order restricted inference in Statistical Inference under Order Restrictions. R. E. Barlow. D. J. Bartholomew. J. M. Bremner and H. D. Brunk have done much to stimulate research in this area. and so we wish to express our gratitude to them first.
Publisher: Springer Science & Business Media
ISBN: 1461399408
Category : Mathematics
Languages : en
Pages : 305
Book Description
With support from the University of Iowa and the Office of Naval Research. a small conference on order restricted inference was held at the University of Iowa in Iowa City in April of 1981. There were twenty-one participants. mostly from the midwest. and eleven talks were presented. A highlight of the conference was a talk by D. J. Bartholomew on. "Reflections on the past and thoughts about the future. " The conference was especially valuable because it brought together researchers who were thinking about related problems. A small conference on a limited topic is one of the best ways to stimulate research and facilitate collaboration. Because of the success of the first conference. a second conference was organized and held in September of 1985. This second conference was made possible again by support from the Office of Naval Research under Department of the Navy Contract NOOOI4-85-0161 and the University of Iowa. There were thirty-five participants and twenty presentations on a wide variety of topics dealing with order restricted inference at the second conference. This volume is a collection of fourteen of those presentations. By collecting together and organizing the fundamental results in order restricted inference in Statistical Inference under Order Restrictions. R. E. Barlow. D. J. Bartholomew. J. M. Bremner and H. D. Brunk have done much to stimulate research in this area. and so we wish to express our gratitude to them first.
Order Restricted Statistical Inference
Author: Tim Robertson
Publisher: John Wiley & Sons Incorporated
ISBN: 9780471917878
Category : Psychology
Languages : en
Pages : 521
Book Description
This work attempts to provide a comprehensive treatment of the topic of statistical inference under inequality constraints, in which much of the theory is based on the principles ofr maximum likelihood estimation and likelihood ratio tests.
Publisher: John Wiley & Sons Incorporated
ISBN: 9780471917878
Category : Psychology
Languages : en
Pages : 521
Book Description
This work attempts to provide a comprehensive treatment of the topic of statistical inference under inequality constraints, in which much of the theory is based on the principles ofr maximum likelihood estimation and likelihood ratio tests.
Statistical Inference Under Order Restrictions
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 388
Book Description
;Contents: Isotonic regression; Estimation under order restrictions; Testing the equality of ordered means--likelihood ratio tests in the normal case; Testing the equality of ordered means--extensions and generalizations; Estimation of distributions; Isotonic tests for goodness of fit; Conditional expectation given a sigma-lattice.
Publisher:
ISBN:
Category :
Languages : en
Pages : 388
Book Description
;Contents: Isotonic regression; Estimation under order restrictions; Testing the equality of ordered means--likelihood ratio tests in the normal case; Testing the equality of ordered means--extensions and generalizations; Estimation of distributions; Isotonic tests for goodness of fit; Conditional expectation given a sigma-lattice.
Statistical Inference as Severe Testing
Author: Deborah G. Mayo
Publisher: Cambridge University Press
ISBN: 1108563309
Category : Mathematics
Languages : en
Pages : 503
Book Description
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Publisher: Cambridge University Press
ISBN: 1108563309
Category : Mathematics
Languages : en
Pages : 503
Book Description
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Principles of Statistical Inference
Author: D. R. Cox
Publisher: Cambridge University Press
ISBN: 1139459139
Category : Mathematics
Languages : en
Pages : 227
Book Description
In this definitive book, D. R. Cox gives a comprehensive and balanced appraisal of statistical inference. He develops the key concepts, describing and comparing the main ideas and controversies over foundational issues that have been keenly argued for more than two-hundred years. Continuing a sixty-year career of major contributions to statistical thought, no one is better placed to give this much-needed account of the field. An appendix gives a more personal assessment of the merits of different ideas. The content ranges from the traditional to the contemporary. While specific applications are not treated, the book is strongly motivated by applications across the sciences and associated technologies. The mathematics is kept as elementary as feasible, though previous knowledge of statistics is assumed. The book will be valued by every user or student of statistics who is serious about understanding the uncertainty inherent in conclusions from statistical analyses.
Publisher: Cambridge University Press
ISBN: 1139459139
Category : Mathematics
Languages : en
Pages : 227
Book Description
In this definitive book, D. R. Cox gives a comprehensive and balanced appraisal of statistical inference. He develops the key concepts, describing and comparing the main ideas and controversies over foundational issues that have been keenly argued for more than two-hundred years. Continuing a sixty-year career of major contributions to statistical thought, no one is better placed to give this much-needed account of the field. An appendix gives a more personal assessment of the merits of different ideas. The content ranges from the traditional to the contemporary. While specific applications are not treated, the book is strongly motivated by applications across the sciences and associated technologies. The mathematics is kept as elementary as feasible, though previous knowledge of statistics is assumed. The book will be valued by every user or student of statistics who is serious about understanding the uncertainty inherent in conclusions from statistical analyses.
Statistical Inference for Engineers and Data Scientists
Author: Pierre Moulin
Publisher: Cambridge University Press
ISBN: 1107185920
Category : Mathematics
Languages : en
Pages : 423
Book Description
A mathematically accessible textbook introducing all the tools needed to address modern inference problems in engineering and data science.
Publisher: Cambridge University Press
ISBN: 1107185920
Category : Mathematics
Languages : en
Pages : 423
Book Description
A mathematically accessible textbook introducing all the tools needed to address modern inference problems in engineering and data science.
Probability Theory and Statistical Inference
Author: Aris Spanos
Publisher: Cambridge University Press
ISBN: 1107185149
Category : Business & Economics
Languages : en
Pages : 787
Book Description
This empirical research methods course enables informed implementation of statistical procedures, giving rise to trustworthy evidence.
Publisher: Cambridge University Press
ISBN: 1107185149
Category : Business & Economics
Languages : en
Pages : 787
Book Description
This empirical research methods course enables informed implementation of statistical procedures, giving rise to trustworthy evidence.
Asymptotic Theory of Statistical Inference for Time Series
Author: Masanobu Taniguchi
Publisher: Springer
ISBN: 9781461270287
Category : Mathematics
Languages : en
Pages : 0
Book Description
The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, including non-Gaussian linear processes, long-memory processes, nonlinear processes, non-ergodic processes and diffusion processes are described. The authors discuss estimation and testing theory and many other relevant statistical methods and techniques.
Publisher: Springer
ISBN: 9781461270287
Category : Mathematics
Languages : en
Pages : 0
Book Description
The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, including non-Gaussian linear processes, long-memory processes, nonlinear processes, non-ergodic processes and diffusion processes are described. The authors discuss estimation and testing theory and many other relevant statistical methods and techniques.
Learning Statistics Using R
Author: Randall E. Schumacker
Publisher: SAGE Publications
ISBN: 148332477X
Category : Social Science
Languages : en
Pages : 648
Book Description
Providing easy-to-use R script programs that teach descriptive statistics, graphing, and other statistical methods, Learning Statistics Using R shows readers how to run and utilize R, a free integrated statistical suite that has an extensive library of functions. Randall E. Schumacker’s comprehensive book describes in detail the processing of variables in statistical procedures. Covering a wide range of topics, from probability and sampling distribution to statistical theorems and chi-square, this introductory book helps readers learn not only how to use formulae to calculate statistics, but also how specific statistics fit into the overall research process. Learning Statistics Using R covers data input from vectors, arrays, matrices and data frames, as well as the input of data sets from SPSS, SAS, STATA and other software packages. Schumacker’s text provides the freedom to effectively calculate, manipulate, and graphically display data, using R, on different computer operating systems without the expense of commercial software. Learning Statistics Using R places statistics within the framework of conducting research, where statistical research hypotheses can be directly addressed. Each chapter includes discussion and explanations, tables and graphs, and R functions and outputs to enrich readers′ understanding of statistics through statistical computing and modeling.
Publisher: SAGE Publications
ISBN: 148332477X
Category : Social Science
Languages : en
Pages : 648
Book Description
Providing easy-to-use R script programs that teach descriptive statistics, graphing, and other statistical methods, Learning Statistics Using R shows readers how to run and utilize R, a free integrated statistical suite that has an extensive library of functions. Randall E. Schumacker’s comprehensive book describes in detail the processing of variables in statistical procedures. Covering a wide range of topics, from probability and sampling distribution to statistical theorems and chi-square, this introductory book helps readers learn not only how to use formulae to calculate statistics, but also how specific statistics fit into the overall research process. Learning Statistics Using R covers data input from vectors, arrays, matrices and data frames, as well as the input of data sets from SPSS, SAS, STATA and other software packages. Schumacker’s text provides the freedom to effectively calculate, manipulate, and graphically display data, using R, on different computer operating systems without the expense of commercial software. Learning Statistics Using R places statistics within the framework of conducting research, where statistical research hypotheses can be directly addressed. Each chapter includes discussion and explanations, tables and graphs, and R functions and outputs to enrich readers′ understanding of statistics through statistical computing and modeling.
Nonparametric Statistical Inference
Author: Jean Dickinson Gibbons
Publisher: CRC Press
ISBN: 1351616161
Category : Mathematics
Languages : en
Pages : 508
Book Description
Praise for previous editions: "... a classic with a long history." – Statistical Papers "The fact that the first edition of this book was published in 1971 ... [is] testimony to the book’s success over a long period." – ISI Short Book Reviews "... one of the best books available for a theory course on nonparametric statistics. ... very well written and organized ... recommended for teachers and graduate students." – Biometrics "... There is no competitor for this book and its comprehensive development and application of nonparametric methods. Users of one of the earlier editions should certainly consider upgrading to this new edition." – Technometrics "... Useful to students and research workers ... a good textbook for a beginning graduate-level course in nonparametric statistics." – Journal of the American Statistical Association Since its first publication in 1971, Nonparametric Statistical Inference has been widely regarded as the source for learning about nonparametrics. The Sixth Edition carries on this tradition and incorporates computer solutions based on R. Features Covers the most commonly used nonparametric procedures States the assumptions, develops the theory behind the procedures, and illustrates the techniques using realistic examples from the social, behavioral, and life sciences Presents tests of hypotheses, confidence-interval estimation, sample size determination, power, and comparisons of competing procedures Includes an Appendix of user-friendly tables needed for solutions to all data-oriented examples Gives examples of computer applications based on R, MINITAB, STATXACT, and SAS Lists over 100 new references Nonparametric Statistical Inference, Sixth Edition, has been thoroughly revised and rewritten to make it more readable and reader-friendly. All of the R solutions are new and make this book much more useful for applications in modern times. It has been updated throughout and contains 100 new citations, including some of the most recent, to make it more current and useful for researchers.
Publisher: CRC Press
ISBN: 1351616161
Category : Mathematics
Languages : en
Pages : 508
Book Description
Praise for previous editions: "... a classic with a long history." – Statistical Papers "The fact that the first edition of this book was published in 1971 ... [is] testimony to the book’s success over a long period." – ISI Short Book Reviews "... one of the best books available for a theory course on nonparametric statistics. ... very well written and organized ... recommended for teachers and graduate students." – Biometrics "... There is no competitor for this book and its comprehensive development and application of nonparametric methods. Users of one of the earlier editions should certainly consider upgrading to this new edition." – Technometrics "... Useful to students and research workers ... a good textbook for a beginning graduate-level course in nonparametric statistics." – Journal of the American Statistical Association Since its first publication in 1971, Nonparametric Statistical Inference has been widely regarded as the source for learning about nonparametrics. The Sixth Edition carries on this tradition and incorporates computer solutions based on R. Features Covers the most commonly used nonparametric procedures States the assumptions, develops the theory behind the procedures, and illustrates the techniques using realistic examples from the social, behavioral, and life sciences Presents tests of hypotheses, confidence-interval estimation, sample size determination, power, and comparisons of competing procedures Includes an Appendix of user-friendly tables needed for solutions to all data-oriented examples Gives examples of computer applications based on R, MINITAB, STATXACT, and SAS Lists over 100 new references Nonparametric Statistical Inference, Sixth Edition, has been thoroughly revised and rewritten to make it more readable and reader-friendly. All of the R solutions are new and make this book much more useful for applications in modern times. It has been updated throughout and contains 100 new citations, including some of the most recent, to make it more current and useful for researchers.