OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging

OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging PDF Author: Luping Zhou
Publisher: Springer Nature
ISBN: 3030326950
Category : Computers
Languages : en
Pages : 126

Get Book Here

Book Description
This book constitutes the refereed proceedings of the Second International Workshop on Context-Aware Surgical Theaters, OR 2.0 2019, and the Second International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. For OR 2.0 all 6 submissions were accepted for publication. They aim to highlight the potential use of machine vision and perception, robotics, surgical simulation and modeling, multi-modal data fusion and visualization, image analysis, advanced imaging, advanced display technologies, human-computer interfaces, sensors, wearable and implantable electronics and robots, visual attention models, cognitive models, decision support networks to enhance surgical procedural assistance, context-awareness and team communication in the operating theater, human-robot collaborative systems, and surgical training and assessment. MLCN 2019 accepted 6 papers out of 7 submissions for publication. They focus on addressing the problems of applying machine learning to large and multi-site clinical neuroimaging datasets. The workshop aimed to bring together experts in both machine learning and clinical neuroimaging to discuss and hopefully bridge the existing challenges of applied machine learning in clinical neuroscience.

OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging

OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging PDF Author: Luping Zhou
Publisher: Springer Nature
ISBN: 3030326950
Category : Computers
Languages : en
Pages : 126

Get Book Here

Book Description
This book constitutes the refereed proceedings of the Second International Workshop on Context-Aware Surgical Theaters, OR 2.0 2019, and the Second International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. For OR 2.0 all 6 submissions were accepted for publication. They aim to highlight the potential use of machine vision and perception, robotics, surgical simulation and modeling, multi-modal data fusion and visualization, image analysis, advanced imaging, advanced display technologies, human-computer interfaces, sensors, wearable and implantable electronics and robots, visual attention models, cognitive models, decision support networks to enhance surgical procedural assistance, context-awareness and team communication in the operating theater, human-robot collaborative systems, and surgical training and assessment. MLCN 2019 accepted 6 papers out of 7 submissions for publication. They focus on addressing the problems of applying machine learning to large and multi-site clinical neuroimaging datasets. The workshop aimed to bring together experts in both machine learning and clinical neuroimaging to discuss and hopefully bridge the existing challenges of applied machine learning in clinical neuroscience.

Mental Health Informatics

Mental Health Informatics PDF Author: Jessica D. Tenenbaum
Publisher: Springer Nature
ISBN: 3030705587
Category : Medical
Languages : en
Pages : 540

Get Book Here

Book Description
This textbook provides a detailed resource introducing the subdiscipline of mental health informatics. It systematically reviews the methods, paradigms, tools and knowledge base in both clinical and bioinformatics and across the spectrum from research to clinical care. Key foundational technologies, such as terminologies, ontologies and data exchange standards are presented and given context within the complex landscape of mental health conditions, research and care. The learning health system model is utilized to emphasize the bi-directional nature of the translational science associated with mental health processes. Descriptions of the data, technologies, paradigms and products that are generated by and used in each process and their limitations are discussed. Mental Health Informatics: Enabling a Learning Mental Healthcare System is a comprehensive introductory resource for students, educators and researchers in mental health informatics and related behavioral sciences. It is an ideal resource for use in a survey course for both pre- and post-doctoral training programs, as well as for healthcare administrators, funding entities, vendors and product developers working to make mental healthcare more evidence-based.

Machine Learning in Clinical Neuroimaging

Machine Learning in Clinical Neuroimaging PDF Author: Ahmed Abdulkadir
Publisher: Springer Nature
ISBN: 3030875865
Category : Computers
Languages : en
Pages : 185

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 4th International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2021, held on September 27, 2021, in conjunction with MICCAI 2021. The workshop was held virtually due to the COVID-19 pandemic. The 17 papers presented in this book were carefully reviewed and selected from 27 submissions. They were organized in topical sections named: computational anatomy and brain networks and time series.

Medical Image Computing and Computer Assisted Intervention – MICCAI 2024

Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 PDF Author: Marius George Linguraru
Publisher: Springer Nature
ISBN: 3031720695
Category :
Languages : en
Pages : 819

Get Book Here

Book Description


Deep Learning for Medical Image Analysis

Deep Learning for Medical Image Analysis PDF Author: S. Kevin Zhou
Publisher: Academic Press
ISBN: 0323858880
Category : Computers
Languages : en
Pages : 544

Get Book Here

Book Description
Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache

Magnetic Resonance Brain Imaging

Magnetic Resonance Brain Imaging PDF Author: Jörg Polzehl
Publisher: Springer Nature
ISBN: 3030291847
Category : Medical
Languages : en
Pages : 242

Get Book Here

Book Description
This book discusses the modeling and analysis of magnetic resonance imaging (MRI) data acquired from the human brain. The data processing pipelines described rely on R. The book is intended for readers from two communities: Statisticians who are interested in neuroimaging and looking for an introduction to the acquired data and typical scientific problems in the field; and neuroimaging students wanting to learn about the statistical modeling and analysis of MRI data. Offering a practical introduction to the field, the book focuses on those problems in data analysis for which implementations within R are available. It also includes fully worked examples and as such serves as a tutorial on MRI analysis with R, from which the readers can derive their own data processing scripts. The book starts with a short introduction to MRI and then examines the process of reading and writing common neuroimaging data formats to and from the R session. The main chapters cover three common MR imaging modalities and their data modeling and analysis problems: functional MRI, diffusion MRI, and Multi-Parameter Mapping. The book concludes with extended appendices providing details of the non-parametric statistics used and the resources for R and MRI data.The book also addresses the issues of reproducibility and topics like data organization and description, as well as open data and open science. It relies solely on a dynamic report generation with knitr and uses neuroimaging data publicly available in data repositories. The PDF was created executing the R code in the chunks and then running LaTeX, which means that almost all figures, numbers, and results were generated while producing the PDF from the sources.

fMRI Neurofeedback

fMRI Neurofeedback PDF Author: Michelle Hampson
Publisher: Academic Press
ISBN: 0128224363
Category : Computers
Languages : en
Pages : 366

Get Book Here

Book Description
fMRI Neurofeedback provides a perspective on how the field of functional magnetic resonance imaging (fMRI) neurofeedback has evolved, an introduction to state-of-the-art methods used for fMRI neurofeedback, a review of published neuroscientific and clinical applications, and a discussion of relevant ethical considerations. It gives a view of the ongoing research challenges throughout and provides guidance for researchers new to the field on the practical implementation and design of fMRI neurofeedback protocols. This book is designed to be accessible to all scientists and clinicians interested in conducting fMRI neurofeedback research, addressing the variety of different knowledge gaps that readers may have given their varied backgrounds and avoiding field-specific jargon. The book, therefore, will be suitable for engineers, computer scientists, neuroscientists, psychologists, and physicians working in fMRI neurofeedback. - Provides a reference on fMRI neurofeedback covering history, methods, mechanisms, clinical applications, and basic research, as well as ethical considerations - Offers contributions from international experts—leading research groups are represented, including from Europe, Japan, Israel, and the United States - Includes coverage of data analytic methods, study design, neuroscience mechanisms, and clinical considerations - Presents a perspective on future translational development

Medical Image Analysis

Medical Image Analysis PDF Author: Alejandro Frangi
Publisher: Academic Press
ISBN: 0128136588
Category : Technology & Engineering
Languages : en
Pages : 700

Get Book Here

Book Description
Medical Image Analysis presents practical knowledge on medical image computing and analysis as written by top educators and experts. This text is a modern, practical, self-contained reference that conveys a mix of fundamental methodological concepts within different medical domains. Sections cover core representations and properties of digital images and image enhancement techniques, advanced image computing methods (including segmentation, registration, motion and shape analysis), machine learning, how medical image computing (MIC) is used in clinical and medical research, and how to identify alternative strategies and employ software tools to solve typical problems in MIC. - An authoritative presentation of key concepts and methods from experts in the field - Sections clearly explaining key methodological principles within relevant medical applications - Self-contained chapters enable the text to be used on courses with differing structures - A representative selection of modern topics and techniques in medical image computing - Focus on medical image computing as an enabling technology to tackle unmet clinical needs - Presentation of traditional and machine learning approaches to medical image computing

Biomedical Data Mining for Information Retrieval

Biomedical Data Mining for Information Retrieval PDF Author: Sujata Dash
Publisher: John Wiley & Sons
ISBN: 111971124X
Category : Computers
Languages : en
Pages : 450

Get Book Here

Book Description
BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics.

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning PDF Author: Wojciech Samek
Publisher: Springer Nature
ISBN: 3030289540
Category : Computers
Languages : en
Pages : 435

Get Book Here

Book Description
The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.