Author: W. S. Hemp
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 142
Book Description
Optimum Structures
Author: W. S. Hemp
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 142
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 142
Book Description
Optimum Design of Steel Structures
Author: József Farkas
Publisher: Springer Science & Business Media
ISBN: 3642368689
Category : Science
Languages : en
Pages : 278
Book Description
This book helps designers and manufacturers to select and develop the most suitable and competitive steel structures, which are safe, fit for production and economic. An optimum design system is used to find the best characteristics of structural models, which guarantee the fulfilment of design and fabrication requirements and minimize the cost function. Realistic numerical models are used as main components of industrial steel structures. Chapter 1 containts some experiences with the optimum design of steel structures Chapter 2 treats some newer mathematical optimization methods. Chapter 3 gives formulae for fabrication times and costs. Chapters 4 deals with beams and columns. Summarizes the Eurocode rules for design. Chapter 5 deals with the design of tubular trusses. Chapter 6 gives the design of frame structures and fire-resistant design rules for a frame. In Chapters 7 some minimum cost design problems of stiffened and cellular plates and shells are worked out for cases of different stiffenings and loads. Chapter 8 gives a cost comparison of cylindrical and conical shells. The book contains a large collection of literatures and a subject list and a name index.
Publisher: Springer Science & Business Media
ISBN: 3642368689
Category : Science
Languages : en
Pages : 278
Book Description
This book helps designers and manufacturers to select and develop the most suitable and competitive steel structures, which are safe, fit for production and economic. An optimum design system is used to find the best characteristics of structural models, which guarantee the fulfilment of design and fabrication requirements and minimize the cost function. Realistic numerical models are used as main components of industrial steel structures. Chapter 1 containts some experiences with the optimum design of steel structures Chapter 2 treats some newer mathematical optimization methods. Chapter 3 gives formulae for fabrication times and costs. Chapters 4 deals with beams and columns. Summarizes the Eurocode rules for design. Chapter 5 deals with the design of tubular trusses. Chapter 6 gives the design of frame structures and fire-resistant design rules for a frame. In Chapters 7 some minimum cost design problems of stiffened and cellular plates and shells are worked out for cases of different stiffenings and loads. Chapter 8 gives a cost comparison of cylindrical and conical shells. The book contains a large collection of literatures and a subject list and a name index.
Mechanics of Optimal Structural Design
Author: David W. A. Rees
Publisher: John Wiley & Sons
ISBN: 9780470747810
Category : Technology & Engineering
Languages : en
Pages : 582
Book Description
In a global climate where engineers are increasingly under pressure to make the most of limited resources, there are huge potential financial and environmental benefits to be gained by designing for minimum weight. With Mechanics of Optimal Structural Design, David Rees brings the original approach of weight optimization to the existing structural design literature, providing a methodology for attaining minimum weight of a range of structures under their working loads. He addresses the current gap in education between formal structural design teaching at undergraduate level and the practical application of this knowledge in industry, describing the analytical techniques that students need to understand before applying computational techniques that can be easy to misuse without this grounding. Shows engineers how to approach structural design for minimum weight in clear, concise terms Contains many new least-weight design techniques, taking into consideration different manners of loading and including new topics that have not previously been considered within the least-weight theme Considers the demands for least-weight road, air and space vehicles for the future Enhanced by illustrative worked examples to enlighten the theory, exercises at the end of each chapter that enable application of the theory covered, and an accompanying website with worked examples and solutions housed at www.wiley.com/go/rees The least-weight analyses of basic structural elements ensure a spread of interest with many applications in mechanical, civil, aircraft and automobile engineering. Consequently, this book fills the gap between the basic material taught at undergraduate level and other approaches to optimum design, for example computer simulations and the finite element method.
Publisher: John Wiley & Sons
ISBN: 9780470747810
Category : Technology & Engineering
Languages : en
Pages : 582
Book Description
In a global climate where engineers are increasingly under pressure to make the most of limited resources, there are huge potential financial and environmental benefits to be gained by designing for minimum weight. With Mechanics of Optimal Structural Design, David Rees brings the original approach of weight optimization to the existing structural design literature, providing a methodology for attaining minimum weight of a range of structures under their working loads. He addresses the current gap in education between formal structural design teaching at undergraduate level and the practical application of this knowledge in industry, describing the analytical techniques that students need to understand before applying computational techniques that can be easy to misuse without this grounding. Shows engineers how to approach structural design for minimum weight in clear, concise terms Contains many new least-weight design techniques, taking into consideration different manners of loading and including new topics that have not previously been considered within the least-weight theme Considers the demands for least-weight road, air and space vehicles for the future Enhanced by illustrative worked examples to enlighten the theory, exercises at the end of each chapter that enable application of the theory covered, and an accompanying website with worked examples and solutions housed at www.wiley.com/go/rees The least-weight analyses of basic structural elements ensure a spread of interest with many applications in mechanical, civil, aircraft and automobile engineering. Consequently, this book fills the gap between the basic material taught at undergraduate level and other approaches to optimum design, for example computer simulations and the finite element method.
High Performance and Optimum Design of Structures and Materials
Author: W. P. De Wilde
Publisher: WIT Press
ISBN: 1845647742
Category : Technology & Engineering
Languages : en
Pages : 705
Book Description
The use of novel materials and new structural concepts nowadays is not restricted to highly technical areas like aerospace, aeronautical applications or the automotive industry, but affects all engineering fields including those such as civil engineering and architecture. Addressing issues involving advanced types of structures, particularly those based on new concepts or new materials and their system design, contributions highlight the latest developments in design, optimisation, manufacturing and experimentation. Also included are contributions on new software, numerical methods and different optimisation techniques. Optimisation problems of interest involve those related to size, shape and topology of structures and materials. Most high performance structures require the development of a generation of new materials, which can more easily resist a range of external stimuli or react in a non-conventional manner. Particular emphasis is placed on intelligent structures and materials as well as the application of computational methods for their modelling, control and management. Optimisation techniques have much to offer to those involved in the design of new industrial products. The formulation of optimum design has evolved from the time it was purely an academic topic, able now to satisfy the requirements of real life prototypes. The development of new algorithms and the appearance of powerful commercial computer codes, with easy to use graphical interfaces, have created a fertile field for the incorporation of optimisation in the design process in all engineering disciplines. This proceedings volume is the first from a new edition of the High Performance Design of Structures and Materials and the Optimum Design of Structures conferences, which follows the success of a number of meetings that originated in 1989. Topics covered include: Composite materials & structures; Material characterisation; Experiments and numerical analysis; Steel structures; High performance concretes; Natural fibre composites; Transformable structures; Lightweight structures; Timber structures; Environmentally friendly and sustainable structures; Emerging structural applications; Optimisation in civil engineering; Evolutionary methods in optimisation; Shape and topology optimisation; Aerospace structures; Structural optimisation; Biomechanics application; Material optimisation; Life cost optimisation; Intelligence structures and smart materials.
Publisher: WIT Press
ISBN: 1845647742
Category : Technology & Engineering
Languages : en
Pages : 705
Book Description
The use of novel materials and new structural concepts nowadays is not restricted to highly technical areas like aerospace, aeronautical applications or the automotive industry, but affects all engineering fields including those such as civil engineering and architecture. Addressing issues involving advanced types of structures, particularly those based on new concepts or new materials and their system design, contributions highlight the latest developments in design, optimisation, manufacturing and experimentation. Also included are contributions on new software, numerical methods and different optimisation techniques. Optimisation problems of interest involve those related to size, shape and topology of structures and materials. Most high performance structures require the development of a generation of new materials, which can more easily resist a range of external stimuli or react in a non-conventional manner. Particular emphasis is placed on intelligent structures and materials as well as the application of computational methods for their modelling, control and management. Optimisation techniques have much to offer to those involved in the design of new industrial products. The formulation of optimum design has evolved from the time it was purely an academic topic, able now to satisfy the requirements of real life prototypes. The development of new algorithms and the appearance of powerful commercial computer codes, with easy to use graphical interfaces, have created a fertile field for the incorporation of optimisation in the design process in all engineering disciplines. This proceedings volume is the first from a new edition of the High Performance Design of Structures and Materials and the Optimum Design of Structures conferences, which follows the success of a number of meetings that originated in 1989. Topics covered include: Composite materials & structures; Material characterisation; Experiments and numerical analysis; Steel structures; High performance concretes; Natural fibre composites; Transformable structures; Lightweight structures; Timber structures; Environmentally friendly and sustainable structures; Emerging structural applications; Optimisation in civil engineering; Evolutionary methods in optimisation; Shape and topology optimisation; Aerospace structures; Structural optimisation; Biomechanics application; Material optimisation; Life cost optimisation; Intelligence structures and smart materials.
Bridge Aeroelasticity
Author: J. A. Jurado
Publisher: WIT Press
ISBN: 184564056X
Category : Technology & Engineering
Languages : en
Pages : 369
Book Description
This book is dedicated to the study of an aeroelastic phenomenon of cable supported long span bridges known as flutter, and proposes very innovative design methodologies, such as sensitivity analysis and optimization techniques, already utilized successfully in automobile and aerospace industries. The topic of long-span suspension and cable-stayed bridges is currently of great importance. These types of bridge pose great technical difficulties due to their slenderness and often great dimension. Therefore, these bridges tend to have problems caused by natural forces such as wind loads, some of which we have witnessed in our history, and we are currently seeing a very high incidence of bridge construction to overcome geographical obstacles such as bays, straits, or great estuaries. Therefore, it seems very appropriate to write a book showing the current capability of analysis and design, when up until now, the information could only be found partially in technical articles. This book will be useful for bridge design engineers as well as researchers working in the field. This book only requires previous knowledge of structural finite element models and dynamics, and it is advisable to have some previous knowledge in bridge engineering. Nevertheless, this book is very self-contained in such a way that all the information necessary to understand the theoretical developments is presented without the need of additional bibliography.
Publisher: WIT Press
ISBN: 184564056X
Category : Technology & Engineering
Languages : en
Pages : 369
Book Description
This book is dedicated to the study of an aeroelastic phenomenon of cable supported long span bridges known as flutter, and proposes very innovative design methodologies, such as sensitivity analysis and optimization techniques, already utilized successfully in automobile and aerospace industries. The topic of long-span suspension and cable-stayed bridges is currently of great importance. These types of bridge pose great technical difficulties due to their slenderness and often great dimension. Therefore, these bridges tend to have problems caused by natural forces such as wind loads, some of which we have witnessed in our history, and we are currently seeing a very high incidence of bridge construction to overcome geographical obstacles such as bays, straits, or great estuaries. Therefore, it seems very appropriate to write a book showing the current capability of analysis and design, when up until now, the information could only be found partially in technical articles. This book will be useful for bridge design engineers as well as researchers working in the field. This book only requires previous knowledge of structural finite element models and dynamics, and it is advisable to have some previous knowledge in bridge engineering. Nevertheless, this book is very self-contained in such a way that all the information necessary to understand the theoretical developments is presented without the need of additional bibliography.
Michell Structures
Author: Tomasz Lewiński
Publisher: Springer
ISBN: 3319951807
Category : Science
Languages : en
Pages : 582
Book Description
The book covers the theory of Michell structures being the lightest and fully stressed systems of bars, designed within a given domain, possibly within the whole space, transmitting a given load towards a given support. Discovered already in 1904 by A.G.M. Michell, the structures named after him have attracted constant attention due to their peculiar feature of disclosing the optimal streams of stresses equilibrating a given load and thus determining the optimal layout of bars. The optimal layouts emerge from among all possible structural topologies, thus constituting unique designs being simultaneously light and stiff. The optimal structures turn out to be embedded in optimal vector fields covering the whole feasible domain. Key features include: a variationally consistent theory of bar systems, thin plates in bending and membrane shells; recapitulation of the theory of optimum design of trusses of minimum weight or of minimal compliance; the basis of 2D Michell theory for a single load case; kinematic and static approaches; 2D benchmark constructions including Hemp’s structures and optimal cantilevers; L-shape domain problems, three forces problem in 2D, bridge problems; revisiting the old - and delivering new - 3D benchmark solutions; extension to multiple load conditions; Prager-Rozvany grillages; the theory of funiculars and archgrids; the methods of optimum design of shape and material inspired by the theory of Michell structures, industrial applications. The book can be useful for graduate students, professional engineers and researchers specializing in the Optimum Design and in Topology Optimization in general.
Publisher: Springer
ISBN: 3319951807
Category : Science
Languages : en
Pages : 582
Book Description
The book covers the theory of Michell structures being the lightest and fully stressed systems of bars, designed within a given domain, possibly within the whole space, transmitting a given load towards a given support. Discovered already in 1904 by A.G.M. Michell, the structures named after him have attracted constant attention due to their peculiar feature of disclosing the optimal streams of stresses equilibrating a given load and thus determining the optimal layout of bars. The optimal layouts emerge from among all possible structural topologies, thus constituting unique designs being simultaneously light and stiff. The optimal structures turn out to be embedded in optimal vector fields covering the whole feasible domain. Key features include: a variationally consistent theory of bar systems, thin plates in bending and membrane shells; recapitulation of the theory of optimum design of trusses of minimum weight or of minimal compliance; the basis of 2D Michell theory for a single load case; kinematic and static approaches; 2D benchmark constructions including Hemp’s structures and optimal cantilevers; L-shape domain problems, three forces problem in 2D, bridge problems; revisiting the old - and delivering new - 3D benchmark solutions; extension to multiple load conditions; Prager-Rozvany grillages; the theory of funiculars and archgrids; the methods of optimum design of shape and material inspired by the theory of Michell structures, industrial applications. The book can be useful for graduate students, professional engineers and researchers specializing in the Optimum Design and in Topology Optimization in general.
Analysis and Optimum Design of Metal Structures
Author: J Farkas
Publisher: CRC Press
ISBN: 9789054106692
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
Detailing a number of structural analysis problems such as residual welding stresses and distortions and behaviour of thin-walled rods loaded in bending, this text also explores mathematical function minimization methods, expert systems and optimum design of welded box beams.
Publisher: CRC Press
ISBN: 9789054106692
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
Detailing a number of structural analysis problems such as residual welding stresses and distortions and behaviour of thin-walled rods loaded in bending, this text also explores mathematical function minimization methods, expert systems and optimum design of welded box beams.
Guide to Structural Optimization
Author: Jasbir S. Arora
Publisher: Amer Society of Civil Engineers
ISBN: 9780784402207
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
Optimization methods are perceived to be at the heart of computer methods for designing engineering systems. With these optimization methods, the designer can evaluate more alternatives, resulting in a better and more cost-effective design. This guide describes the use of modern optimization methods with simple yet meaningful structural design examples. Optimum solutions are obtained and, where possible, compared with the solutions obtained using traditional design procedures.
Publisher: Amer Society of Civil Engineers
ISBN: 9780784402207
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
Optimization methods are perceived to be at the heart of computer methods for designing engineering systems. With these optimization methods, the designer can evaluate more alternatives, resulting in a better and more cost-effective design. This guide describes the use of modern optimization methods with simple yet meaningful structural design examples. Optimum solutions are obtained and, where possible, compared with the solutions obtained using traditional design procedures.
Optimum Design of Metal Structures
Author: József Farkas
Publisher: Ellis Horwood
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 232
Book Description
Publisher: Ellis Horwood
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 232
Book Description
Metaheuristic Approaches for Optimum Design of Reinforced Concrete Structures
Author: Aylin Ece Kayabekir
Publisher:
ISBN: 9781799826651
Category : Buildings, Reinforced concrete
Languages : en
Pages :
Book Description
"This book explores the use of metaheuristic approaches in the optimum design of reinforced concrete structures"--
Publisher:
ISBN: 9781799826651
Category : Buildings, Reinforced concrete
Languages : en
Pages :
Book Description
"This book explores the use of metaheuristic approaches in the optimum design of reinforced concrete structures"--