Author: George Lindfield
Publisher: Academic Press
ISBN: 0128036664
Category : Mathematics
Languages : en
Pages : 258
Book Description
Introduction to Nature-Inspired Optimization brings together many of the innovative mathematical methods for non-linear optimization that have their origins in the way various species behave in order to optimize their chances of survival. The book describes each method, examines their strengths and weaknesses, and where appropriate, provides the MATLAB code to give practical insight into the detailed structure of these methods and how they work. Nature-inspired algorithms emulate processes that are found in the natural world, spurring interest for optimization. Lindfield/Penny provide concise coverage to all the major algorithms, including genetic algorithms, artificial bee colony algorithms, ant colony optimization and the cuckoo search algorithm, among others. This book provides a quick reference to practicing engineers, researchers and graduate students who work in the field of optimization. - Applies concepts in nature and biology to develop new algorithms for nonlinear optimization - Offers working MATLABĀ® programs for the major algorithms described, applying them to a range of problems - Provides useful comparative studies of the algorithms, highlighting their strengths and weaknesses - Discusses the current state-of-the-field and indicates possible areas of future development
Introduction to Nature-Inspired Optimization
Author: George Lindfield
Publisher: Academic Press
ISBN: 0128036664
Category : Mathematics
Languages : en
Pages : 258
Book Description
Introduction to Nature-Inspired Optimization brings together many of the innovative mathematical methods for non-linear optimization that have their origins in the way various species behave in order to optimize their chances of survival. The book describes each method, examines their strengths and weaknesses, and where appropriate, provides the MATLAB code to give practical insight into the detailed structure of these methods and how they work. Nature-inspired algorithms emulate processes that are found in the natural world, spurring interest for optimization. Lindfield/Penny provide concise coverage to all the major algorithms, including genetic algorithms, artificial bee colony algorithms, ant colony optimization and the cuckoo search algorithm, among others. This book provides a quick reference to practicing engineers, researchers and graduate students who work in the field of optimization. - Applies concepts in nature and biology to develop new algorithms for nonlinear optimization - Offers working MATLABĀ® programs for the major algorithms described, applying them to a range of problems - Provides useful comparative studies of the algorithms, highlighting their strengths and weaknesses - Discusses the current state-of-the-field and indicates possible areas of future development
Publisher: Academic Press
ISBN: 0128036664
Category : Mathematics
Languages : en
Pages : 258
Book Description
Introduction to Nature-Inspired Optimization brings together many of the innovative mathematical methods for non-linear optimization that have their origins in the way various species behave in order to optimize their chances of survival. The book describes each method, examines their strengths and weaknesses, and where appropriate, provides the MATLAB code to give practical insight into the detailed structure of these methods and how they work. Nature-inspired algorithms emulate processes that are found in the natural world, spurring interest for optimization. Lindfield/Penny provide concise coverage to all the major algorithms, including genetic algorithms, artificial bee colony algorithms, ant colony optimization and the cuckoo search algorithm, among others. This book provides a quick reference to practicing engineers, researchers and graduate students who work in the field of optimization. - Applies concepts in nature and biology to develop new algorithms for nonlinear optimization - Offers working MATLABĀ® programs for the major algorithms described, applying them to a range of problems - Provides useful comparative studies of the algorithms, highlighting their strengths and weaknesses - Discusses the current state-of-the-field and indicates possible areas of future development
Nature-Inspired Optimization Algorithms
Author: Xin-She Yang
Publisher: Elsevier
ISBN: 0124167454
Category : Computers
Languages : en
Pages : 277
Book Description
Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. - Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature - Provides a theoretical understanding as well as practical implementation hints - Provides a step-by-step introduction to each algorithm
Publisher: Elsevier
ISBN: 0124167454
Category : Computers
Languages : en
Pages : 277
Book Description
Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. - Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature - Provides a theoretical understanding as well as practical implementation hints - Provides a step-by-step introduction to each algorithm
Multicriteria Optimization in Engineering and in the Sciences
Author: Wolfram Stadler
Publisher: Springer Science & Business Media
ISBN: 9780306427435
Category : Mathematics
Languages : en
Pages : 442
Book Description
We are rarely asked to. make decisions based on only one criterion; most often, decisions are based on several usually confticting, criteria. In nature, if the design of a system evolves to some final, optimal state, then it must include a balance for the interaction of the system with its surroundings certainly a design based on a variety of criteria. Furthermore, the diversity of nature's designs suggests an infinity of such optimal states. In another sense, decisions simultaneously optimize a finite number of criteria, while there is usually an infinity of optimal solutions. Multicriteria optimization provides the mathematical framework to accommodate these demands. Multicriteria optimization has its roots in mathematical economics, in particular, in consumer economics as considered by Edgeworth and Pareto. The critical question in an exchange economy concerns the "equilibrium point" at which each of N consumers has achieved the best possible deal for hirnself or herself. Ultimately, this is a collective decision in which any further gain by one consumer can occur only at the expense of at least one other consumer. Such an equilibrium concept was first introduced by Edgeworth in 1881 in his book on mathematical psychics. Today, such an optimum is variously called "Pareto optimum" (after the Italian-French welfare economist who continued and expanded Edgeworth's work), "effi. cient," "nondominated," and so on.
Publisher: Springer Science & Business Media
ISBN: 9780306427435
Category : Mathematics
Languages : en
Pages : 442
Book Description
We are rarely asked to. make decisions based on only one criterion; most often, decisions are based on several usually confticting, criteria. In nature, if the design of a system evolves to some final, optimal state, then it must include a balance for the interaction of the system with its surroundings certainly a design based on a variety of criteria. Furthermore, the diversity of nature's designs suggests an infinity of such optimal states. In another sense, decisions simultaneously optimize a finite number of criteria, while there is usually an infinity of optimal solutions. Multicriteria optimization provides the mathematical framework to accommodate these demands. Multicriteria optimization has its roots in mathematical economics, in particular, in consumer economics as considered by Edgeworth and Pareto. The critical question in an exchange economy concerns the "equilibrium point" at which each of N consumers has achieved the best possible deal for hirnself or herself. Ultimately, this is a collective decision in which any further gain by one consumer can occur only at the expense of at least one other consumer. Such an equilibrium concept was first introduced by Edgeworth in 1881 in his book on mathematical psychics. Today, such an optimum is variously called "Pareto optimum" (after the Italian-French welfare economist who continued and expanded Edgeworth's work), "effi. cient," "nondominated," and so on.
Nature-Inspired Methods for Metaheuristics Optimization
Author: Fouad Bennis
Publisher: Springer Nature
ISBN: 3030264580
Category : Business & Economics
Languages : en
Pages : 503
Book Description
This book gathers together a set of chapters covering recent development in optimization methods that are inspired by nature. The first group of chapters describes in detail different meta-heuristic algorithms, and shows their applicability using some test or real-world problems. The second part of the book is especially focused on advanced applications and case studies. They span different engineering fields, including mechanical, electrical and civil engineering, and earth/environmental science, and covers topics such as robotics, water management, process optimization, among others. The book covers both basic concepts and advanced issues, offering a timely introduction to nature-inspired optimization method for newcomers and students, and a source of inspiration as well as important practical insights to engineers and researchers.
Publisher: Springer Nature
ISBN: 3030264580
Category : Business & Economics
Languages : en
Pages : 503
Book Description
This book gathers together a set of chapters covering recent development in optimization methods that are inspired by nature. The first group of chapters describes in detail different meta-heuristic algorithms, and shows their applicability using some test or real-world problems. The second part of the book is especially focused on advanced applications and case studies. They span different engineering fields, including mechanical, electrical and civil engineering, and earth/environmental science, and covers topics such as robotics, water management, process optimization, among others. The book covers both basic concepts and advanced issues, offering a timely introduction to nature-inspired optimization method for newcomers and students, and a source of inspiration as well as important practical insights to engineers and researchers.
Nature-Inspired Optimization Algorithms
Author: Aditya Khamparia
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110676117
Category : Computers
Languages : en
Pages : 170
Book Description
This book will focus on the involvement of data mining and intelligent computing methods for recent advances in Biomedical applications and algorithms of nature-inspired computing for Biomedical systems. The proposed meta heuristic or nature-inspired techniques should be an enhanced, hybrid, adaptive or improved version of basic algorithms in terms of performance and convergence metrics. In this exciting and emerging interdisciplinary area a wide range of theory and methodologies are being investigated and developed to tackle complex and challenging problems. Today, analysis and processing of data is one of big focuses among researchers community and information society. Due to evolution and knowledge discovery of natural computing, related meta heuristic or bio-inspired algorithms have gained increasing popularity in the recent decade because of their significant potential to tackle computationally intractable optimization dilemma in medical, engineering, military, space and industry fields. The main reason behind the success rate of nature inspired algorithms is their capability to solve problems. The nature inspired optimization techniques provide adaptive computational tools for the complex optimization problems and diversified engineering applications. Tentative Table of Contents/Topic Coverage: - Neural Computation - Evolutionary Computing Methods - Neuroscience driven AI Inspired Algorithms - Biological System based algorithms - Hybrid and Intelligent Computing Algorithms - Application of Natural Computing - Review and State of art analysis of Optimization algorithms - Molecular and Quantum computing applications - Swarm Intelligence - Population based algorithm and other optimizations
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110676117
Category : Computers
Languages : en
Pages : 170
Book Description
This book will focus on the involvement of data mining and intelligent computing methods for recent advances in Biomedical applications and algorithms of nature-inspired computing for Biomedical systems. The proposed meta heuristic or nature-inspired techniques should be an enhanced, hybrid, adaptive or improved version of basic algorithms in terms of performance and convergence metrics. In this exciting and emerging interdisciplinary area a wide range of theory and methodologies are being investigated and developed to tackle complex and challenging problems. Today, analysis and processing of data is one of big focuses among researchers community and information society. Due to evolution and knowledge discovery of natural computing, related meta heuristic or bio-inspired algorithms have gained increasing popularity in the recent decade because of their significant potential to tackle computationally intractable optimization dilemma in medical, engineering, military, space and industry fields. The main reason behind the success rate of nature inspired algorithms is their capability to solve problems. The nature inspired optimization techniques provide adaptive computational tools for the complex optimization problems and diversified engineering applications. Tentative Table of Contents/Topic Coverage: - Neural Computation - Evolutionary Computing Methods - Neuroscience driven AI Inspired Algorithms - Biological System based algorithms - Hybrid and Intelligent Computing Algorithms - Application of Natural Computing - Review and State of art analysis of Optimization algorithms - Molecular and Quantum computing applications - Swarm Intelligence - Population based algorithm and other optimizations
Nature-Inspired Computing and Optimization
Author: Srikanta Patnaik
Publisher: Springer
ISBN: 3319509209
Category : Technology & Engineering
Languages : en
Pages : 506
Book Description
The book provides readers with a snapshot of the state of the art in the field of nature-inspired computing and its application in optimization. The approach is mainly practice-oriented: each bio-inspired technique or algorithm is introduced together with one of its possible applications. Applications cover a wide range of real-world optimization problems: from feature selection and image enhancement to scheduling and dynamic resource management, from wireless sensor networks and wiring network diagnosis to sports training planning and gene expression, from topology control and morphological filters to nutritional meal design and antenna array design. There are a few theoretical chapters comparing different existing techniques, exploring the advantages of nature-inspired computing over other methods, and investigating the mixing time of genetic algorithms. The book also introduces a wide range of algorithms, including the ant colony optimization, the bat algorithm, genetic algorithms, the collision-based optimization algorithm, the flower pollination algorithm, multi-agent systems and particle swarm optimization. This timely book is intended as a practice-oriented reference guide for students, researchers and professionals.
Publisher: Springer
ISBN: 3319509209
Category : Technology & Engineering
Languages : en
Pages : 506
Book Description
The book provides readers with a snapshot of the state of the art in the field of nature-inspired computing and its application in optimization. The approach is mainly practice-oriented: each bio-inspired technique or algorithm is introduced together with one of its possible applications. Applications cover a wide range of real-world optimization problems: from feature selection and image enhancement to scheduling and dynamic resource management, from wireless sensor networks and wiring network diagnosis to sports training planning and gene expression, from topology control and morphological filters to nutritional meal design and antenna array design. There are a few theoretical chapters comparing different existing techniques, exploring the advantages of nature-inspired computing over other methods, and investigating the mixing time of genetic algorithms. The book also introduces a wide range of algorithms, including the ant colony optimization, the bat algorithm, genetic algorithms, the collision-based optimization algorithm, the flower pollination algorithm, multi-agent systems and particle swarm optimization. This timely book is intended as a practice-oriented reference guide for students, researchers and professionals.
Optimization Methods
Author: Marco Cavazzuti
Publisher: Springer Science & Business Media
ISBN: 3642311865
Category : Technology & Engineering
Languages : en
Pages : 272
Book Description
This book is about optimization techniques and is subdivided into two parts. In the first part a wide overview on optimization theory is presented. Optimization is presented as being composed of five topics, namely: design of experiment, response surface modeling, deterministic optimization, stochastic optimization, and robust engineering design. Each chapter, after presenting the main techniques for each part, draws application oriented conclusions including didactic examples. In the second part some applications are presented to guide the reader through the process of setting up a few optimization exercises, analyzing critically the choices which are made step by step, and showing how the different topics that constitute the optimization theory can be used jointly in an optimization process. The applications which are presented are mainly in the field of thermodynamics and fluid dynamics due to the author's background.
Publisher: Springer Science & Business Media
ISBN: 3642311865
Category : Technology & Engineering
Languages : en
Pages : 272
Book Description
This book is about optimization techniques and is subdivided into two parts. In the first part a wide overview on optimization theory is presented. Optimization is presented as being composed of five topics, namely: design of experiment, response surface modeling, deterministic optimization, stochastic optimization, and robust engineering design. Each chapter, after presenting the main techniques for each part, draws application oriented conclusions including didactic examples. In the second part some applications are presented to guide the reader through the process of setting up a few optimization exercises, analyzing critically the choices which are made step by step, and showing how the different topics that constitute the optimization theory can be used jointly in an optimization process. The applications which are presented are mainly in the field of thermodynamics and fluid dynamics due to the author's background.
Numerical Optimization in Engineering and Sciences
Author: Debashis Dutta
Publisher: Springer Nature
ISBN: 981153215X
Category : Technology & Engineering
Languages : en
Pages : 569
Book Description
This book presents select peer-reviewed papers presented at the International Conference on Numerical Optimization in Engineering and Sciences (NOIEAS) 2019. The book covers a wide variety of numerical optimization techniques across all major engineering disciplines like mechanical, manufacturing, civil, electrical, chemical, computer, and electronics engineering. The major focus is on innovative ideas, current methods and latest results involving advanced optimization techniques. The contents provide a good balance between numerical models and analytical results obtained for different engineering problems and challenges. This book will be useful for students, researchers, and professionals interested in engineering optimization techniques.
Publisher: Springer Nature
ISBN: 981153215X
Category : Technology & Engineering
Languages : en
Pages : 569
Book Description
This book presents select peer-reviewed papers presented at the International Conference on Numerical Optimization in Engineering and Sciences (NOIEAS) 2019. The book covers a wide variety of numerical optimization techniques across all major engineering disciplines like mechanical, manufacturing, civil, electrical, chemical, computer, and electronics engineering. The major focus is on innovative ideas, current methods and latest results involving advanced optimization techniques. The contents provide a good balance between numerical models and analytical results obtained for different engineering problems and challenges. This book will be useful for students, researchers, and professionals interested in engineering optimization techniques.
Computational Management
Author: Srikanta Patnaik
Publisher: Springer Nature
ISBN: 303072929X
Category : Technology & Engineering
Languages : en
Pages : 682
Book Description
This book offers a timely review of cutting-edge applications of computational intelligence to business management and financial analysis. It covers a wide range of intelligent and optimization techniques, reporting in detail on their application to real-world problems relating to portfolio management and demand forecasting, decision making, knowledge acquisition, and supply chain scheduling and management.
Publisher: Springer Nature
ISBN: 303072929X
Category : Technology & Engineering
Languages : en
Pages : 682
Book Description
This book offers a timely review of cutting-edge applications of computational intelligence to business management and financial analysis. It covers a wide range of intelligent and optimization techniques, reporting in detail on their application to real-world problems relating to portfolio management and demand forecasting, decision making, knowledge acquisition, and supply chain scheduling and management.
Mathematical Theory of Optimization
Author: Ding-Zhu Du
Publisher: Springer Science & Business Media
ISBN: 1475757956
Category : Mathematics
Languages : en
Pages : 277
Book Description
This book provides an introduction to the mathematical theory of optimization. It emphasizes the convergence theory of nonlinear optimization algorithms and applications of nonlinear optimization to combinatorial optimization. Mathematical Theory of Optimization includes recent developments in global convergence, the Powell conjecture, semidefinite programming, and relaxation techniques for designs of approximation solutions of combinatorial optimization problems.
Publisher: Springer Science & Business Media
ISBN: 1475757956
Category : Mathematics
Languages : en
Pages : 277
Book Description
This book provides an introduction to the mathematical theory of optimization. It emphasizes the convergence theory of nonlinear optimization algorithms and applications of nonlinear optimization to combinatorial optimization. Mathematical Theory of Optimization includes recent developments in global convergence, the Powell conjecture, semidefinite programming, and relaxation techniques for designs of approximation solutions of combinatorial optimization problems.