Author: Mauricio G.C. Resende
Publisher: Springer
ISBN: 1493965301
Category : Mathematics
Languages : en
Pages : 323
Book Description
This is the first book to cover GRASP (Greedy Randomized Adaptive Search Procedures), a metaheuristic that has enjoyed wide success in practice with a broad range of applications to real-world combinatorial optimization problems. The state-of-the-art coverage and carefully crafted pedagogical style lends this book highly accessible as an introductory text not only to GRASP, but also to combinatorial optimization, greedy algorithms, local search, and path-relinking, as well as to heuristics and metaheuristics, in general. The focus is on algorithmic and computational aspects of applied optimization with GRASP with emphasis given to the end-user, providing sufficient information on the broad spectrum of advances in applied optimization with GRASP. For the more advanced reader, chapters on hybridization with path-relinking and parallel and continuous GRASP present these topics in a clear and concise fashion. Additionally, the book offers a very complete annotated bibliography of GRASP and combinatorial optimization. For the practitioner who needs to solve combinatorial optimization problems, the book provides a chapter with four case studies and implementable templates for all algorithms covered in the text. This book, with its excellent overview of GRASP, will appeal to researchers and practitioners of combinatorial optimization who have a need to find optimal or near optimal solutions to hard combinatorial optimization problems.
Optimization by GRASP
Author: Mauricio G.C. Resende
Publisher: Springer
ISBN: 1493965301
Category : Mathematics
Languages : en
Pages : 323
Book Description
This is the first book to cover GRASP (Greedy Randomized Adaptive Search Procedures), a metaheuristic that has enjoyed wide success in practice with a broad range of applications to real-world combinatorial optimization problems. The state-of-the-art coverage and carefully crafted pedagogical style lends this book highly accessible as an introductory text not only to GRASP, but also to combinatorial optimization, greedy algorithms, local search, and path-relinking, as well as to heuristics and metaheuristics, in general. The focus is on algorithmic and computational aspects of applied optimization with GRASP with emphasis given to the end-user, providing sufficient information on the broad spectrum of advances in applied optimization with GRASP. For the more advanced reader, chapters on hybridization with path-relinking and parallel and continuous GRASP present these topics in a clear and concise fashion. Additionally, the book offers a very complete annotated bibliography of GRASP and combinatorial optimization. For the practitioner who needs to solve combinatorial optimization problems, the book provides a chapter with four case studies and implementable templates for all algorithms covered in the text. This book, with its excellent overview of GRASP, will appeal to researchers and practitioners of combinatorial optimization who have a need to find optimal or near optimal solutions to hard combinatorial optimization problems.
Publisher: Springer
ISBN: 1493965301
Category : Mathematics
Languages : en
Pages : 323
Book Description
This is the first book to cover GRASP (Greedy Randomized Adaptive Search Procedures), a metaheuristic that has enjoyed wide success in practice with a broad range of applications to real-world combinatorial optimization problems. The state-of-the-art coverage and carefully crafted pedagogical style lends this book highly accessible as an introductory text not only to GRASP, but also to combinatorial optimization, greedy algorithms, local search, and path-relinking, as well as to heuristics and metaheuristics, in general. The focus is on algorithmic and computational aspects of applied optimization with GRASP with emphasis given to the end-user, providing sufficient information on the broad spectrum of advances in applied optimization with GRASP. For the more advanced reader, chapters on hybridization with path-relinking and parallel and continuous GRASP present these topics in a clear and concise fashion. Additionally, the book offers a very complete annotated bibliography of GRASP and combinatorial optimization. For the practitioner who needs to solve combinatorial optimization problems, the book provides a chapter with four case studies and implementable templates for all algorithms covered in the text. This book, with its excellent overview of GRASP, will appeal to researchers and practitioners of combinatorial optimization who have a need to find optimal or near optimal solutions to hard combinatorial optimization problems.
Optimization Theory with Applications
Author: Donald A. Pierre
Publisher: Courier Corporation
ISBN: 0486136957
Category : Mathematics
Languages : en
Pages : 644
Book Description
Broad-spectrum approach to important topic. Explores the classic theory of minima and maxima, classical calculus of variations, simplex technique and linear programming, optimality and dynamic programming, more. 1969 edition.
Publisher: Courier Corporation
ISBN: 0486136957
Category : Mathematics
Languages : en
Pages : 644
Book Description
Broad-spectrum approach to important topic. Explores the classic theory of minima and maxima, classical calculus of variations, simplex technique and linear programming, optimality and dynamic programming, more. 1969 edition.
Essays and Surveys in Metaheuristics
Author: Celso C. Ribeiro
Publisher: Springer Science & Business Media
ISBN: 1461515076
Category : Computers
Languages : en
Pages : 647
Book Description
Finding exact solutions to many combinatorial optimization problems in busi ness, engineering, and science still poses a real challenge, despite the impact of recent advances in mathematical programming and computer technology. New fields of applications, such as computational biology, electronic commerce, and supply chain management, bring new challenges and needs for algorithms and optimization techniques. Metaheuristics are master procedures that guide and modify the operations of subordinate heuristics, to produce improved approx imate solutions to hard optimization problems with respect to more simple algorithms. They also provide fast and robust tools, producing high-quality solutions in reasonable computation times. The field of metaheuristics has been fast evolving in recent years. Tech niques such as simulated annealing, tabu search, genetic algorithms, scatter search, greedy randomized adaptive search, variable neighborhood search, ant systems, and their hybrids are currently among the most efficient and robust optimization strategies to find high-quality solutions to many real-life optimiza tion problems. A very large nmnber of successful applications of metaheuristics are reported in the literature and spread throughout many books, journals, and conference proceedings. A series of international conferences entirely devoted to the theory, applications, and computational developments in metaheuristics has been attracting an increasing number of participants, from universities and the industry.
Publisher: Springer Science & Business Media
ISBN: 1461515076
Category : Computers
Languages : en
Pages : 647
Book Description
Finding exact solutions to many combinatorial optimization problems in busi ness, engineering, and science still poses a real challenge, despite the impact of recent advances in mathematical programming and computer technology. New fields of applications, such as computational biology, electronic commerce, and supply chain management, bring new challenges and needs for algorithms and optimization techniques. Metaheuristics are master procedures that guide and modify the operations of subordinate heuristics, to produce improved approx imate solutions to hard optimization problems with respect to more simple algorithms. They also provide fast and robust tools, producing high-quality solutions in reasonable computation times. The field of metaheuristics has been fast evolving in recent years. Tech niques such as simulated annealing, tabu search, genetic algorithms, scatter search, greedy randomized adaptive search, variable neighborhood search, ant systems, and their hybrids are currently among the most efficient and robust optimization strategies to find high-quality solutions to many real-life optimiza tion problems. A very large nmnber of successful applications of metaheuristics are reported in the literature and spread throughout many books, journals, and conference proceedings. A series of international conferences entirely devoted to the theory, applications, and computational developments in metaheuristics has been attracting an increasing number of participants, from universities and the industry.
Accelerated Optimization for Machine Learning
Author: Zhouchen Lin
Publisher: Springer Nature
ISBN: 9811529108
Category : Computers
Languages : en
Pages : 286
Book Description
This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning. Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well as for graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.
Publisher: Springer Nature
ISBN: 9811529108
Category : Computers
Languages : en
Pages : 286
Book Description
This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning. Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well as for graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.
Metaheuristics
Author: Karl F. Doerner
Publisher: Springer Science & Business Media
ISBN: 0387719210
Category : Mathematics
Languages : en
Pages : 409
Book Description
This book’s aim is to provide several different kinds of information: a delineation of general metaheuristics methods, a number of state-of-the-art articles from a variety of well-known classical application areas as well as an outlook to modern computational methods in promising new areas. Therefore, this book may equally serve as a textbook in graduate courses for students, as a reference book for people interested in engineering or social sciences, and as a collection of new and promising avenues for researchers working in this field.
Publisher: Springer Science & Business Media
ISBN: 0387719210
Category : Mathematics
Languages : en
Pages : 409
Book Description
This book’s aim is to provide several different kinds of information: a delineation of general metaheuristics methods, a number of state-of-the-art articles from a variety of well-known classical application areas as well as an outlook to modern computational methods in promising new areas. Therefore, this book may equally serve as a textbook in graduate courses for students, as a reference book for people interested in engineering or social sciences, and as a collection of new and promising avenues for researchers working in this field.
An Introduction to Optimization
Author: Edwin K. P. Chong
Publisher: John Wiley & Sons
ISBN: 0471654000
Category : Mathematics
Languages : en
Pages : 497
Book Description
A modern, up-to-date introduction to optimization theory and methods This authoritative book serves as an introductory text to optimization at the senior undergraduate and beginning graduate levels. With consistently accessible and elementary treatment of all topics, An Introduction to Optimization, Second Edition helps students build a solid working knowledge of the field, including unconstrained optimization, linear programming, and constrained optimization. Supplemented with more than one hundred tables and illustrations, an extensive bibliography, and numerous worked examples to illustrate both theory and algorithms, this book also provides: * A review of the required mathematical background material * A mathematical discussion at a level accessible to MBA and business students * A treatment of both linear and nonlinear programming * An introduction to recent developments, including neural networks, genetic algorithms, and interior-point methods * A chapter on the use of descent algorithms for the training of feedforward neural networks * Exercise problems after every chapter, many new to this edition * MATLAB(r) exercises and examples * Accompanying Instructor's Solutions Manual available on request An Introduction to Optimization, Second Edition helps students prepare for the advanced topics and technological developments that lie ahead. It is also a useful book for researchers and professionals in mathematics, electrical engineering, economics, statistics, and business. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Publisher: John Wiley & Sons
ISBN: 0471654000
Category : Mathematics
Languages : en
Pages : 497
Book Description
A modern, up-to-date introduction to optimization theory and methods This authoritative book serves as an introductory text to optimization at the senior undergraduate and beginning graduate levels. With consistently accessible and elementary treatment of all topics, An Introduction to Optimization, Second Edition helps students build a solid working knowledge of the field, including unconstrained optimization, linear programming, and constrained optimization. Supplemented with more than one hundred tables and illustrations, an extensive bibliography, and numerous worked examples to illustrate both theory and algorithms, this book also provides: * A review of the required mathematical background material * A mathematical discussion at a level accessible to MBA and business students * A treatment of both linear and nonlinear programming * An introduction to recent developments, including neural networks, genetic algorithms, and interior-point methods * A chapter on the use of descent algorithms for the training of feedforward neural networks * Exercise problems after every chapter, many new to this edition * MATLAB(r) exercises and examples * Accompanying Instructor's Solutions Manual available on request An Introduction to Optimization, Second Edition helps students prepare for the advanced topics and technological developments that lie ahead. It is also a useful book for researchers and professionals in mathematics, electrical engineering, economics, statistics, and business. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Integrated Methods for Optimization
Author: John N. Hooker
Publisher: Springer Science & Business Media
ISBN: 146141900X
Category : Business & Economics
Languages : en
Pages : 655
Book Description
The first edition of Integrated Methods for Optimization was published in January 2007. Because the book covers a rapidly developing field, the time is right for a second edition. The book provides a unified treatment of optimization methods. It brings ideas from mathematical programming (MP), constraint programming (CP), and global optimization (GO)into a single volume. There is no reason these must be learned as separate fields, as they normally are, and there are three reasons they should be studied together. (1) There is much in common among them intellectually, and to a large degree they can be understood as special cases of a single underlying solution technology. (2) A growing literature reports how they can be profitably integrated to formulate and solve a wide range of problems. (3) Several software packages now incorporate techniques from two or more of these fields. The book provides a unique resource for graduate students and practitioners who want a well-rounded background in optimization methods within a single course of study. Engineering students are a particularly large potential audience, because engineering optimization problems often benefit from a combined approach—particularly where design, scheduling, or logistics are involved. The text is also of value to those studying operations research, because their educational programs rarely cover CP, and to those studying computer science and artificial intelligence (AI), because their curric ula typically omit MP and GO. The text is also useful for practitioners in any of these areas who want to learn about another, because it provides a more concise and accessible treatment than other texts. The book can cover so wide a range of material because it focuses on ideas that arerelevant to the methods used in general-purpose optimization and constraint solvers. The book focuses on ideas behind the methods that have proved useful in general-purpose optimization and constraint solvers, as well as integrated solvers of the present and foreseeable future. The second edition updates results in this area and includes several major new topics: Background material in linear, nonlinear, and dynamic programming. Network flow theory, due to its importance in filtering algorithms. A chapter on generalized duality theory that more explicitly develops a unifying primal-dual algorithmic structure for optimization methods. An extensive survey of search methods from both MP and AI, using the primal-dual framework as an organizing principle. Coverage of several additional global constraints used in CP solvers. The book continues to focus on exact as opposed to heuristic methods. It is possible to bring heuristic methods into the unifying scheme described in the book, and the new edition will retain the brief discussion of how this might be done.
Publisher: Springer Science & Business Media
ISBN: 146141900X
Category : Business & Economics
Languages : en
Pages : 655
Book Description
The first edition of Integrated Methods for Optimization was published in January 2007. Because the book covers a rapidly developing field, the time is right for a second edition. The book provides a unified treatment of optimization methods. It brings ideas from mathematical programming (MP), constraint programming (CP), and global optimization (GO)into a single volume. There is no reason these must be learned as separate fields, as they normally are, and there are three reasons they should be studied together. (1) There is much in common among them intellectually, and to a large degree they can be understood as special cases of a single underlying solution technology. (2) A growing literature reports how they can be profitably integrated to formulate and solve a wide range of problems. (3) Several software packages now incorporate techniques from two or more of these fields. The book provides a unique resource for graduate students and practitioners who want a well-rounded background in optimization methods within a single course of study. Engineering students are a particularly large potential audience, because engineering optimization problems often benefit from a combined approach—particularly where design, scheduling, or logistics are involved. The text is also of value to those studying operations research, because their educational programs rarely cover CP, and to those studying computer science and artificial intelligence (AI), because their curric ula typically omit MP and GO. The text is also useful for practitioners in any of these areas who want to learn about another, because it provides a more concise and accessible treatment than other texts. The book can cover so wide a range of material because it focuses on ideas that arerelevant to the methods used in general-purpose optimization and constraint solvers. The book focuses on ideas behind the methods that have proved useful in general-purpose optimization and constraint solvers, as well as integrated solvers of the present and foreseeable future. The second edition updates results in this area and includes several major new topics: Background material in linear, nonlinear, and dynamic programming. Network flow theory, due to its importance in filtering algorithms. A chapter on generalized duality theory that more explicitly develops a unifying primal-dual algorithmic structure for optimization methods. An extensive survey of search methods from both MP and AI, using the primal-dual framework as an organizing principle. Coverage of several additional global constraints used in CP solvers. The book continues to focus on exact as opposed to heuristic methods. It is possible to bring heuristic methods into the unifying scheme described in the book, and the new edition will retain the brief discussion of how this might be done.
Optimization Techniques
Author: Chander Mohan
Publisher:
ISBN: 9781906574215
Category : Mathematical optimization
Languages : en
Pages : 0
Book Description
Suitable for various disciplines where a systematic course on optimization techniques is considered necessary, and also for research scholars as well as for specialists working in optimization related problems.
Publisher:
ISBN: 9781906574215
Category : Mathematical optimization
Languages : en
Pages : 0
Book Description
Suitable for various disciplines where a systematic course on optimization techniques is considered necessary, and also for research scholars as well as for specialists working in optimization related problems.
An Introduction to Optimization
Author: Edwin K. P. Chong
Publisher: John Wiley & Sons
ISBN: 1118515153
Category : Mathematics
Languages : en
Pages : 646
Book Description
Praise for the Third Edition ". . . guides and leads the reader through the learning path . . . [e]xamples are stated very clearly and the results are presented with attention to detail." —MAA Reviews Fully updated to reflect new developments in the field, the Fourth Edition of Introduction to Optimization fills the need for accessible treatment of optimization theory and methods with an emphasis on engineering design. Basic definitions and notations are provided in addition to the related fundamental background for linear algebra, geometry, and calculus. This new edition explores the essential topics of unconstrained optimization problems, linear programming problems, and nonlinear constrained optimization. The authors also present an optimization perspective on global search methods and include discussions on genetic algorithms, particle swarm optimization, and the simulated annealing algorithm. Featuring an elementary introduction to artificial neural networks, convex optimization, and multi-objective optimization, the Fourth Edition also offers: A new chapter on integer programming Expanded coverage of one-dimensional methods Updated and expanded sections on linear matrix inequalities Numerous new exercises at the end of each chapter MATLAB exercises and drill problems to reinforce the discussed theory and algorithms Numerous diagrams and figures that complement the written presentation of key concepts MATLAB M-files for implementation of the discussed theory and algorithms (available via the book's website) Introduction to Optimization, Fourth Edition is an ideal textbook for courses on optimization theory and methods. In addition, the book is a useful reference for professionals in mathematics, operations research, electrical engineering, economics, statistics, and business.
Publisher: John Wiley & Sons
ISBN: 1118515153
Category : Mathematics
Languages : en
Pages : 646
Book Description
Praise for the Third Edition ". . . guides and leads the reader through the learning path . . . [e]xamples are stated very clearly and the results are presented with attention to detail." —MAA Reviews Fully updated to reflect new developments in the field, the Fourth Edition of Introduction to Optimization fills the need for accessible treatment of optimization theory and methods with an emphasis on engineering design. Basic definitions and notations are provided in addition to the related fundamental background for linear algebra, geometry, and calculus. This new edition explores the essential topics of unconstrained optimization problems, linear programming problems, and nonlinear constrained optimization. The authors also present an optimization perspective on global search methods and include discussions on genetic algorithms, particle swarm optimization, and the simulated annealing algorithm. Featuring an elementary introduction to artificial neural networks, convex optimization, and multi-objective optimization, the Fourth Edition also offers: A new chapter on integer programming Expanded coverage of one-dimensional methods Updated and expanded sections on linear matrix inequalities Numerous new exercises at the end of each chapter MATLAB exercises and drill problems to reinforce the discussed theory and algorithms Numerous diagrams and figures that complement the written presentation of key concepts MATLAB M-files for implementation of the discussed theory and algorithms (available via the book's website) Introduction to Optimization, Fourth Edition is an ideal textbook for courses on optimization theory and methods. In addition, the book is a useful reference for professionals in mathematics, operations research, electrical engineering, economics, statistics, and business.
Website Optimization
Author: Rich Page
Publisher: John Wiley & Sons
ISBN: 111824060X
Category : Computers
Languages : en
Pages : 495
Book Description
Step-by-step instructions for executing a website testing and optimization plan Website optimization is can be an overwhelming endeavor due to the fact that it encompasses so many strategic and technical issues. However, this hands-on, task-based book demystifies this potentially intimidating topic by offering smart, practical, and tested instructions for developing, implementing, managing, and tracking website optimization efforts. After you learn how to establish an optimization framework, you then dive into learning how to develop a plan, test appropriately and accurately, interpret the results, and optimize in order to maximize conversion rates and improve profits. Zeroes in on fundamentals such as understanding key metrics, choosing analytics tools, researching visitors and their onsite behavior, and crafting a plan for what to test and optimize Walks you through testing and optimizing specific web pages including the homepage, entry and exit pages, product and pricing pages, as well as the shopping cart and check-out process Guides you through important optimization areas such as optimizing text and images Addresses advanced topics including paid search optimization, Facebook fan page optimization, rich media, and more Includes a companion website that features expanded examples, additional resources, tool reviews, and other related information Full of interesting case studies and helpful examples drawn from the author's own experience, Website Optimization: An Hour a Day is the complete solution for anyone who wants to get the best possible results from their web page.
Publisher: John Wiley & Sons
ISBN: 111824060X
Category : Computers
Languages : en
Pages : 495
Book Description
Step-by-step instructions for executing a website testing and optimization plan Website optimization is can be an overwhelming endeavor due to the fact that it encompasses so many strategic and technical issues. However, this hands-on, task-based book demystifies this potentially intimidating topic by offering smart, practical, and tested instructions for developing, implementing, managing, and tracking website optimization efforts. After you learn how to establish an optimization framework, you then dive into learning how to develop a plan, test appropriately and accurately, interpret the results, and optimize in order to maximize conversion rates and improve profits. Zeroes in on fundamentals such as understanding key metrics, choosing analytics tools, researching visitors and their onsite behavior, and crafting a plan for what to test and optimize Walks you through testing and optimizing specific web pages including the homepage, entry and exit pages, product and pricing pages, as well as the shopping cart and check-out process Guides you through important optimization areas such as optimizing text and images Addresses advanced topics including paid search optimization, Facebook fan page optimization, rich media, and more Includes a companion website that features expanded examples, additional resources, tool reviews, and other related information Full of interesting case studies and helpful examples drawn from the author's own experience, Website Optimization: An Hour a Day is the complete solution for anyone who wants to get the best possible results from their web page.