Network Bioscience, 2nd Edition

Network Bioscience, 2nd Edition PDF Author: Marco Pellegrini
Publisher: Frontiers Media SA
ISBN: 288963650X
Category :
Languages : en
Pages : 270

Get Book Here

Book Description
Network science has accelerated a deep and successful trend in research that influences a range of disciplines like mathematics, graph theory, physics, statistics, data science and computer science (just to name a few) and adapts the relevant techniques and insights to address relevant but disparate social, biological, technological questions. We are now in an era of 'big biological data' supported by cost-effective high-throughput genomic, transcriptomic, proteomic, metabolomic data collection techniques that allow one to take snapshots of the cells' molecular profiles in a systematic fashion. Moreover recently, also phenotypic data, data on diseases, symptoms, patients, etc. are being collected at nation-wide level thus giving us another source of highly related (causal) 'big data'. This wealth of data is usually modeled as networks (aka binary relations, graphs or webs) of interactions, (including protein-protein, metabolic, signaling and transcription-regulatory interactions). The network model is a key view point leading to the uncovering of mesoscale phenomena, thus providing an essential bridge between the observable phenotypes and 'omics' underlying mechanisms. Moreover, network analysis is a powerful 'hypothesis generation' tool guiding the scientific cycle of 'data gathering', 'data interpretation, 'hypothesis generation' and 'hypothesis testing'. A major challenge in contemporary research is the synthesis of deep insights coming from network science with the wealth of data (often noisy, contradictory, incomplete and difficult to replicate) so to answer meaningful biological questions, in a quantifiable way using static and dynamic properties of biological networks.

Network Bioscience, 2nd Edition

Network Bioscience, 2nd Edition PDF Author: Marco Pellegrini
Publisher: Frontiers Media SA
ISBN: 288963650X
Category :
Languages : en
Pages : 270

Get Book Here

Book Description
Network science has accelerated a deep and successful trend in research that influences a range of disciplines like mathematics, graph theory, physics, statistics, data science and computer science (just to name a few) and adapts the relevant techniques and insights to address relevant but disparate social, biological, technological questions. We are now in an era of 'big biological data' supported by cost-effective high-throughput genomic, transcriptomic, proteomic, metabolomic data collection techniques that allow one to take snapshots of the cells' molecular profiles in a systematic fashion. Moreover recently, also phenotypic data, data on diseases, symptoms, patients, etc. are being collected at nation-wide level thus giving us another source of highly related (causal) 'big data'. This wealth of data is usually modeled as networks (aka binary relations, graphs or webs) of interactions, (including protein-protein, metabolic, signaling and transcription-regulatory interactions). The network model is a key view point leading to the uncovering of mesoscale phenomena, thus providing an essential bridge between the observable phenotypes and 'omics' underlying mechanisms. Moreover, network analysis is a powerful 'hypothesis generation' tool guiding the scientific cycle of 'data gathering', 'data interpretation, 'hypothesis generation' and 'hypothesis testing'. A major challenge in contemporary research is the synthesis of deep insights coming from network science with the wealth of data (often noisy, contradictory, incomplete and difficult to replicate) so to answer meaningful biological questions, in a quantifiable way using static and dynamic properties of biological networks.

Multi-Objective Optimization in Chemical Engineering

Multi-Objective Optimization in Chemical Engineering PDF Author: Gade Pandu Rangaiah
Publisher: John Wiley & Sons
ISBN: 1118341686
Category : Science
Languages : en
Pages : 487

Get Book Here

Book Description
For reasons both financial and environmental, there is a perpetual need to optimize the design and operating conditions of industrial process systems in order to improve their performance, energy efficiency, profitability, safety and reliability. However, with most chemical engineering application problems having many variables with complex inter-relationships, meeting these optimization objectives can be challenging. This is where Multi-Objective Optimization (MOO) is useful to find the optimal trade-offs among two or more conflicting objectives. This book provides an overview of the recent developments and applications of MOO for modeling, design and operation of chemical, petrochemical, pharmaceutical, energy and related processes. It then covers important theoretical and computational developments as well as specific applications such as metabolic reaction networks, chromatographic systems, CO2 emissions targeting for petroleum refining units, ecodesign of chemical processes, ethanol purification and cumene process design. Multi-Objective Optimization in Chemical Engineering: Developments and Applications is an invaluable resource for researchers and graduate students in chemical engineering as well as industrial practitioners and engineers involved in process design, modeling and optimization.

Model Based Parameter Estimation

Model Based Parameter Estimation PDF Author: Hans Georg Bock
Publisher: Springer Science & Business Media
ISBN: 3642303676
Category : Mathematics
Languages : en
Pages : 342

Get Book Here

Book Description
This judicious selection of articles combines mathematical and numerical methods to apply parameter estimation and optimum experimental design in a range of contexts. These include fields as diverse as biology, medicine, chemistry, environmental physics, image processing and computer vision. The material chosen was presented at a multidisciplinary workshop on parameter estimation held in 2009 in Heidelberg. The contributions show how indispensable efficient methods of applied mathematics and computer-based modeling can be to enhancing the quality of interdisciplinary research. The use of scientific computing to model, simulate, and optimize complex processes has become a standard methodology in many scientific fields, as well as in industry. Demonstrating that the use of state-of-the-art optimization techniques in a number of research areas has much potential for improvement, this book provides advanced numerical methods and the very latest results for the applications under consideration.

22nd European Symposium on Computer Aided Process Engineering

22nd European Symposium on Computer Aided Process Engineering PDF Author: David Bogle
Publisher: Elsevier
ISBN: 0444594310
Category : Science
Languages : en
Pages : 1484

Get Book Here

Book Description
Computer aided process engineering (CAPE) plays a key design and operations role in the process industries. This conference features presentations by CAPE specialists and addresses strategic planning, supply chain issues and the increasingly important area of sustainability audits. Experts collectively highlight the need for CAPE practitioners to embrace the three components of sustainable development: environmental, social and economic progress and the role of systematic and sophisticated CAPE tools in delivering these goals. Contributions from the international community of researchers and engineers using computing-based methods in process engineering Review of the latest developments in process systems engineering Emphasis on a systems approach in tackling industrial and societal grand challenges

Real-time PDE-constrained Optimization

Real-time PDE-constrained Optimization PDF Author: Lorenz T. Biegler
Publisher: SIAM
ISBN: 9780898718935
Category : Differential equations, Partial
Languages : en
Pages : 335

Get Book Here

Book Description
Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs--and the requirement for rapid solution--pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Audience: readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in "offline" optimization contexts and are interested in moving to "online" optimization.

Next Generation Data Science

Next Generation Data Science PDF Author: Henry Han
Publisher: Springer Nature
ISBN: 3031618165
Category : Application software
Languages : en
Pages : 264

Get Book Here

Book Description
Zusammenfassung: This book constitutes the refereed proceedings of the Sescond Southwest Data Science Conference, SDSC 2023, held in Waco, TX, USa, during March 24-25, 2023. The 16 full and 1 short paper included in this book were carefully reviewed and selected from 72 submissions. They were oragnized in topical sections named: Business social and foundation data science; and applied data science, artifiicial intelligence and data engineering.

Optimal State Estimation for Process Monitoring, Fault Diagnosis and Control

Optimal State Estimation for Process Monitoring, Fault Diagnosis and Control PDF Author: Ch. Venkateswarlu
Publisher: Elsevier
ISBN: 0323900682
Category : Technology & Engineering
Languages : en
Pages : 400

Get Book Here

Book Description
Optimal State Estimation for Process Monitoring, Fault Diagnosis and Control presents various mechanistic model based state estimators and data-driven model based state estimators with a special emphasis on their development and applications to process monitoring, fault diagnosis and control. The design and analysis of different state estimators are highlighted with a number of applications and case studies concerning to various real chemical and biochemical processes. The book starts with the introduction of basic concepts, extending to classical methods and successively leading to advances in this field. Design and implementation of various classical and advanced state estimation methods to solve a wide variety of problems makes this book immensely useful for the audience working in different disciplines in academics, research and industry in areas concerning to process monitoring, fault diagnosis, control and related disciplines. - Describes various classical and advanced versions of mechanistic model based state estimation algorithms - Describes various data-driven model based state estimation techniques - Highlights a number of real applications of mechanistic model based and data-driven model based state estimators/soft sensors - Beneficial to those associated with process monitoring, fault diagnosis, online optimization, control and related areas

Modeling and Optimization: Theory and Applications

Modeling and Optimization: Theory and Applications PDF Author: Luis F. Zuluaga
Publisher: Springer Science & Business Media
ISBN: 1461489873
Category : Mathematics
Languages : en
Pages : 141

Get Book Here

Book Description
This volume contains a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in Bethlehem, Pennsylvania, USA on July 30-August 1, 2012. The conference brought together a diverse group of researchers and practitioners, working on both theoretical and practical aspects of continuous or discrete optimization. Topics presented included algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and addressed the application of optimization techniques in finance, logistics, health, and other important fields. The contributions contained in this volume represent a sample of these topics and applications and illustrate the broad diversity of ideas discussed at the meeting.

Springer Handbook of Automation

Springer Handbook of Automation PDF Author: Shimon Y. Nof
Publisher: Springer Science & Business Media
ISBN: 354078831X
Category : Technology & Engineering
Languages : en
Pages : 1841

Get Book Here

Book Description
This handbook incorporates new developments in automation. It also presents a widespread and well-structured conglomeration of new emerging application areas, such as medical systems and health, transportation, security and maintenance, service, construction and retail as well as production or logistics. The handbook is not only an ideal resource for automation experts but also for people new to this expanding field.

Model Calibration and Parameter Estimation

Model Calibration and Parameter Estimation PDF Author: Ne-Zheng Sun
Publisher: Springer
ISBN: 1493923234
Category : Mathematics
Languages : en
Pages : 638

Get Book Here

Book Description
This three-part book provides a comprehensive and systematic introduction to these challenging topics such as model calibration, parameter estimation, reliability assessment, and data collection design. Part 1 covers the classical inverse problem for parameter estimation in both deterministic and statistical frameworks, Part 2 is dedicated to system identification, hyperparameter estimation, and model dimension reduction, and Part 3 considers how to collect data and construct reliable models for prediction and decision-making. For the first time, topics such as multiscale inversion, stochastic field parameterization, level set method, machine learning, global sensitivity analysis, data assimilation, model uncertainty quantification, robust design, and goal-oriented modeling, are systematically described and summarized in a single book from the perspective of model inversion, and elucidated with numerical examples from environmental and water resources modeling. Readers of this book will not only learn basic concepts and methods for simple parameter estimation, but also get familiar with advanced methods for modeling complex systems. Algorithms for mathematical tools used in this book, such as numerical optimization, automatic differentiation, adaptive parameterization, hierarchical Bayesian, metamodeling, Markov chain Monte Carlo, are covered in details. This book can be used as a reference for graduate and upper level undergraduate students majoring in environmental engineering, hydrology, and geosciences. It also serves as an essential reference book for professionals such as petroleum engineers, mining engineers, chemists, mechanical engineers, biologists, biology and medical engineering, applied mathematicians, and others who perform mathematical modeling.