Optimisation of Dielectric Barrier Discharge Plasma Actuators and Their Application to Fluid Dynamics

Optimisation of Dielectric Barrier Discharge Plasma Actuators and Their Application to Fluid Dynamics PDF Author: Rasool Erfani
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description

Optimisation of Dielectric Barrier Discharge Plasma Actuators and Their Application to Fluid Dynamics

Optimisation of Dielectric Barrier Discharge Plasma Actuators and Their Application to Fluid Dynamics PDF Author: Rasool Erfani
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Optimisation of Dielectric Barrier Discharge Plasma Actuators and Their Application to Fluid Dynamics

Optimisation of Dielectric Barrier Discharge Plasma Actuators and Their Application to Fluid Dynamics PDF Author: Rasool Erfani
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The standard dielectric barrier discharge (DBD) plasma actuator, in which an asymmetric arrangement of electrodes leads to momentum coupling into the surrounding air, has already demonstrated its capability for flow control. The effect of some parameters such as dielectric thickness, dielectric temperature, voltage amplitude, driving frequency, different configurations and arrangements on actuator performance are examined. The new configuration of DBD which uses multiple encapsulated electrodes (MEE) has been shown to produce a superior and more desirable performance over the standard actuator design. As the number of encapsulated electrodes increases and other variables such as the driving frequency and voltage amplitude are considered, finding the optimum actuator configuration for increasing the induced velocity becomes a challenge. The surrogate modelling optimisation provides a cheap and yet efficient method for systematically investigating the effect of different parameters on the performance of the plasma actuator. The effect of the optimum actuator configuration on the aerodynamic performance of an aerofoil under leading edge separation and wake interaction conditions is examined. The plasma actuator is placed at the leadingedge of a symmetric NACA 0015 aerofoil which corresponds to the location of the leading edge slat. The aerofoil is operated at a chord Reynolds number of 0.2×10 6. Surface pressure measurements along with the mean velocity profile of the wake using pitot measurements are used to determine the lift and drag coefficients, respectively. Particle image velocimetry (PIV) is also utilised to visualise and quantify the induced flow field. In comparison with reported literature on the standard DBD configuration, the MEE setup employed here is shown to provide a better means of flow control for the control of aerofoil separation. The characteristicsof a DBD plasma actuator when exposed to an unsteady flow generated by a shock tube is also investigated. This type of flow, which is often used in different studies, contains a range of flow regimes from sudden pressure and density changes to relatively uniform high-speed flow regions. A small circular shock tube is employed along with the schlieren photography technique to visualise the flow. The voltage and current traces of the plasma actuator are monitored throughout, and using the well established shock tube theory the change in the actuator characteristics are related to the physical processes which occur inside the shocktube. The results show that not only is the shear layer outside of the shock tube affected by the plasma but the passage of the shock front and high-speed flow behind it also greatly influences the properties of the plasma.

Flow Control Techniques and Applications

Flow Control Techniques and Applications PDF Author: Jinjun Wang
Publisher: Cambridge University Press
ISBN: 1107161568
Category : Science
Languages : en
Pages : 293

Get Book Here

Book Description
Master the theory, applications and control mechanisms of flow control techniques.

Modeling of Dielectric Barrier Discharge Plasma Actuators for Flow Control Simulations

Modeling of Dielectric Barrier Discharge Plasma Actuators for Flow Control Simulations PDF Author: Denis Palmeiro
Publisher:
ISBN: 9780494823682
Category :
Languages : en
Pages : 198

Get Book Here

Book Description
Single-dielectric-barrier-discharge (SDBD) plasma actuators have shown much promise as an actuator for active flow control. Proper design and optimization of plasma actuators requires a model capable of accurately predicting the induced flow for a range of geometrical and excitation parameters. A number of models have been proposed in the literature, but have primarily been developed in isolation on independent geometries, frequencies and voltages. This study presents a comparison of four popular plasma actuator models over a range of actuation parameters for three different actuator geometries typical of actuators used in the literature. The results show that the hybrid model of Lemire & Vo (2011) is the only model capable of predicting the appropriate trends of the induced velocity for different geometries. Additionally, several modifications of this model have been integrated into a new proposed model for the plasma actuator, introducing a number of improvements.

Recueil. Pièces diverses d'Albert Husson jouées de 1952 à 1974

Recueil. Pièces diverses d'Albert Husson jouées de 1952 à 1974 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


High-lift Airfoil Separation Control with Dielectric Barrier Discharge Plasma Actuators

High-lift Airfoil Separation Control with Dielectric Barrier Discharge Plasma Actuators PDF Author: Jesse Little
Publisher:
ISBN:
Category :
Languages : en
Pages : 217

Get Book Here

Book Description
Abstract: This work examines the performance of dielectric barrier discharge (DBD) plasma actuators for controlling separation from the leading edge and trailing edge flap shoulder of a supercritical high-lift airfoil. DBD plasma actuators driven by both typical AC voltages (AC-DBD) and more developmental nanosecond duration pulses (NS-DBD) are investigated. Characterization of the two actuators shows that very different behavior is created when exciting the plasma discharge using these two waveforms. The AC-DBD plasma actuator functions through electrohydrodynamic effects that introduce zero net mass, but nonzero net momentum into the flow. Conversely, the electrohydrodynamic effects of the NS-DBD are quite weak suggesting thermal effects from rapid localized heating by the plasma are responsible for control authority. The performance of both devices as separation control actuators is tested on a high-lift airfoil system. The AC-DBD is effective for controlling turbulent boundary layer separation from a deflected trailing edge flap between Reynolds numbers of 240,000 and 750,000. Momentum coefficients for the AC-DBD plasma actuator are generally an order of magnitude lower than those usually employed for such studies yet control authority is still realized through amplification of natural vortex shedding from the flap shoulder. The corresponding lift enhancement is primarily due to upstream effects from increased circulation around the entire model rather than full separated flow reattachment to the deflected flap surface. Lift enhancement via instability amplification is found to be relatively insensitive to changes in angle of attack provided that the separation location and underlying dynamics do not change. Control authority decreases with increasing Reynolds number and flap deflection highlighting the necessity for further optimization of AC-DBD plasma actuators for use in realistic takeoff and landing transport aircraft applications. As a whole, these findings compare favorably to studies on a similar high-lift platform using piezoelectric driven zero net mass flux actuation. The NS-DBD plasma actuator is ineffective for controlling separation from the deflected trailing edge flap. However, the device is found to be superior to the tested AC-DBD plasma actuators for controlling leading edge separation and rivals the performance of a passive droop by extending the stall angle by six degrees in the Reynolds number range 750,000-1,000,000. Detailed flow diagnostics show the NS-DBD plasma actuator functions as an active trip for pre-stall incidence angles and generates coherent spanwise vortices that entrain freestream momentum into the separated region at post-stall angles. These structures are generated across all surveyed frequencies, but optimal dimensionless frequencies for controlling separation are in the range four to six depending on the incidence angle. The contrasting performance of the NS-DBD plasma actuator at the leading and trailing edge in comparison to the AC-DBD is discussed and recommendations for future work are provided.

Macroscopic Computational Model of Dielectric Barrier Discharge Plasma Actuators

Macroscopic Computational Model of Dielectric Barrier Discharge Plasma Actuators PDF Author: Timothy R. Klein
Publisher:
ISBN:
Category : Actuators
Languages : en
Pages :

Get Book Here

Book Description


Development of Dielectric Barrier Discharge Plasma Actuators and Their Application at Subsonic Speeds

Development of Dielectric Barrier Discharge Plasma Actuators and Their Application at Subsonic Speeds PDF Author: Craig Hale
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Plasma actuators are electrical devices that generate a wall bounded jet without the use of any moving parts. For aerodynamic applications they can be used as flow control devices to delay separation and augment lift on a wing. The aim of this project is to initially develop a system capable of generating and sustaining a plasma that generates a wall bounded jet. The next step is to investigate the effect of varying the number and distribution of encapsulated electrodes in the dielectric layer. Finally the best case design is applied at the leading edge and flap shoulder of a NACA0015 aerofoil with a 20% flap. Utilising a transformer cascade, plasma has been generated for a variety of input voltages. In the quiescent environment of a Faraday cage the velocity flow field is recorded using particle image velocimetry (PIV). Through understanding of the mechanisms involved in producing the wall jet and the importance of the encapsulated electrode a novel actuator design was investigated. The actuator design distributes the encapsulated electrode throughout the dielectric layer. The experiments have shown that actuators with shallow initial encapsulated electrodes induce velocities greater than the baseline case at the same voltage. Actuators with a deep initial electrode are able to induce the highest velocities as they can operate at higher voltages without breakdown of the dielectric. The best actuator case is applied to the aerofoil for Reynolds numbers of 1:97x105, 2:63x105 and 3:29x105. The lift and drag are recorded using pressure measurements around the aerofoil surface and across the aerofoil's wake. PIV is utilised to visualise the flow field. The trailing edge actuator produces a step increase in lift for pre-stall angles of attack and delays stall by 1° at Re = 1:97x105. The leading edge actuator has limited impact on the flow for the no flap deflection case due to the actuator location. As the flap deflection increases the leading edge actuator is able to influence the flow. Repositioning of the leading edge actuator has the ability to reattach the flow around the fore portion of the aerofoil at a post stall angle of alpha = 18°.

Dielectric Barrier Discharge Plasma Actuator for Flow Control

Dielectric Barrier Discharge Plasma Actuator for Flow Control PDF Author: Dmitry F. Opaits
Publisher:
ISBN:
Category :
Languages : en
Pages : 278

Get Book Here

Book Description


Dielectric Barrier Discharge Microplasma Actuator for Flow Control

Dielectric Barrier Discharge Microplasma Actuator for Flow Control PDF Author: Kazuo Shimizu
Publisher:
ISBN:
Category : Technology
Languages : en
Pages :

Get Book Here

Book Description
Dielectric barrier discharge (DBD) plasma actuators are a technology which could replace conventional actuators due to their simple construction, lack of moving parts, and fast response. This type of actuator modifies the airflow due to electrohydrodynamic (EHD) force. The EHD phenomenon occurs due to the momentum transfer from charged species accelerated by an electric field to neutral molecules by collision. This chapter presents a study carried out to investigate experimentally and by numerical simulations a micro-scale plasma actuator. A microplasma requires a low discharge voltage to generate about 1 kV at atmospheric pressure. A multi-electrode microplasma actuator was used which allowed the electrodes to be energized at different potentials or waveforms, thus changing the direction of the flow. The modification of the flow at various time intervals was tracked by a high-speed camera. The numerical simulation was carried out using the Suzen-Huang model and the Navier-Stokes equations.