Introduction to Statistical Decision Theory

Introduction to Statistical Decision Theory PDF Author: John Winsor Pratt
Publisher:
ISBN:
Category : Statistical Decision
Languages : en
Pages : 875

Get Book Here

Book Description

Introduction to Statistical Decision Theory

Introduction to Statistical Decision Theory PDF Author: John Winsor Pratt
Publisher:
ISBN:
Category : Statistical Decision
Languages : en
Pages : 875

Get Book Here

Book Description


Optimal Statistical Decision & Bayesian Inference in Statistical Analysis & Applied Statistical Decision Theory

Optimal Statistical Decision & Bayesian Inference in Statistical Analysis & Applied Statistical Decision Theory PDF Author: Morris H. DeGroot
Publisher: Wiley
ISBN: 9780471687887
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
Set that includes three works covering statistical decision theory and analysis The three books within this set are Optimal Statistical Decisions, Bayesian Inference in Statistical Analysis, and Applied Statistical Decision Theory. Optimal Statistical Decisions discusses the theory and methodology of decision-making in the field. The volume stands as a clear introduction to Bayesian statistical decision theory. A second book, Bayesian Inference in Statistical Analysis, examines the application and relevance of Bayes' theorem to problems that occur during scientific investigations, where inferences must be made regarding parameter values about which little is known. Key aspects of the Bayesian approach are discussed, including the choice of prior distribution, the problem of nuisance parameters, and the role of sufficient statistics. Applied Statistical Decision Theory covers the development of analytic techniques in the field of statistical decision theory. This classic book was first published in the 1960s.

Bayesian Data Analysis, Third Edition

Bayesian Data Analysis, Third Edition PDF Author: Andrew Gelman
Publisher: CRC Press
ISBN: 1439840954
Category : Mathematics
Languages : en
Pages : 677

Get Book Here

Book Description
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Statistical Decision Theory and Bayesian Analysis

Statistical Decision Theory and Bayesian Analysis PDF Author: James O. Berger
Publisher: Springer Science & Business Media
ISBN: 147574286X
Category : Mathematics
Languages : en
Pages : 633

Get Book Here

Book Description
In this new edition the author has added substantial material on Bayesian analysis, including lengthy new sections on such important topics as empirical and hierarchical Bayes analysis, Bayesian calculation, Bayesian communication, and group decision making. With these changes, the book can be used as a self-contained introduction to Bayesian analysis. In addition, much of the decision-theoretic portion of the text was updated, including new sections covering such modern topics as minimax multivariate (Stein) estimation.

Statistical Decision Theory

Statistical Decision Theory PDF Author: James Berger
Publisher: Springer Science & Business Media
ISBN: 147571727X
Category : Mathematics
Languages : en
Pages : 440

Get Book Here

Book Description
Decision theory is generally taught in one of two very different ways. When of opti taught by theoretical statisticians, it tends to be presented as a set of mathematical techniques mality principles, together with a collection of various statistical procedures. When useful in establishing the optimality taught by applied decision theorists, it is usually a course in Bayesian analysis, showing how this one decision principle can be applied in various practical situations. The original goal I had in writing this book was to find some middle ground. I wanted a book which discussed the more theoretical ideas and techniques of decision theory, but in a manner that was constantly oriented towards solving statistical problems. In particular, it seemed crucial to include a discussion of when and why the various decision prin ciples should be used, and indeed why decision theory is needed at all. This original goal seemed indicated by my philosophical position at the time, which can best be described as basically neutral. I felt that no one approach to decision theory (or statistics) was clearly superior to the others, and so planned a rather low key and impartial presentation of the competing ideas. In the course of writing the book, however, I turned into a rabid Bayesian. There was no single cause for this conversion; just a gradual realization that things seemed to ultimately make sense only when looked at from the Bayesian viewpoint.

Optimal Statistical Decisions

Optimal Statistical Decisions PDF Author: Morris H. DeGroot
Publisher: John Wiley & Sons
ISBN: 9780471680291
Category : Mathematics
Languages : en
Pages : 514

Get Book Here

Book Description
The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists.

Statistical Inference as Severe Testing

Statistical Inference as Severe Testing PDF Author: Deborah G. Mayo
Publisher: Cambridge University Press
ISBN: 1108563309
Category : Mathematics
Languages : en
Pages : 503

Get Book Here

Book Description
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.

Uncertainty in Engineering

Uncertainty in Engineering PDF Author: Louis J. M. Aslett
Publisher: Springer Nature
ISBN: 3030836401
Category :
Languages : en
Pages : 148

Get Book Here

Book Description
This open access book provides an introduction to uncertainty quantification in engineering. Starting with preliminaries on Bayesian statistics and Monte Carlo methods, followed by material on imprecise probabilities, it then focuses on reliability theory and simulation methods for complex systems. The final two chapters discuss various aspects of aerospace engineering, considering stochastic model updating from an imprecise Bayesian perspective, and uncertainty quantification for aerospace flight modelling. Written by experts in the subject, and based on lectures given at the Second Training School of the European Research and Training Network UTOPIAE (Uncertainty Treatment and Optimization in Aerospace Engineering), which took place at Durham University (United Kingdom) from 2 to 6 July 2018, the book offers an essential resource for students as well as scientists and practitioners.

Statistical Decision Theory and Related Topics V

Statistical Decision Theory and Related Topics V PDF Author: Shanti S. Gupta
Publisher: Springer Science & Business Media
ISBN: 146122618X
Category : Business & Economics
Languages : en
Pages : 535

Get Book Here

Book Description
The Fifth Purdue International Symposium on Statistical Decision The was held at Purdue University during the period of ory and Related Topics June 14-19,1992. The symposium brought together many prominent leaders and younger researchers in statistical decision theory and related areas. The format of the Fifth Symposium was different from the previous symposia in that in addition to the 54 invited papers, there were 81 papers presented in contributed paper sessions. Of the 54 invited papers presented at the sym posium, 42 are collected in this volume. The papers are grouped into a total of six parts: Part 1 - Retrospective on Wald's Decision Theory and Sequential Analysis; Part 2 - Asymptotics and Nonparametrics; Part 3 - Bayesian Analysis; Part 4 - Decision Theory and Selection Procedures; Part 5 - Probability and Probabilistic Structures; and Part 6 - Sequential, Adaptive, and Filtering Problems. While many of the papers in the volume give the latest theoretical developments in these areas, a large number are either applied or creative review papers.

Bayesian Statistics for Experimental Scientists

Bayesian Statistics for Experimental Scientists PDF Author: Richard A. Chechile
Publisher: MIT Press
ISBN: 0262044587
Category : Mathematics
Languages : en
Pages : 473

Get Book Here

Book Description
An introduction to the Bayesian approach to statistical inference that demonstrates its superiority to orthodox frequentist statistical analysis. This book offers an introduction to the Bayesian approach to statistical inference, with a focus on nonparametric and distribution-free methods. It covers not only well-developed methods for doing Bayesian statistics but also novel tools that enable Bayesian statistical analyses for cases that previously did not have a full Bayesian solution. The book's premise is that there are fundamental problems with orthodox frequentist statistical analyses that distort the scientific process. Side-by-side comparisons of Bayesian and frequentist methods illustrate the mismatch between the needs of experimental scientists in making inferences from data and the properties of the standard tools of classical statistics. The book first covers elementary probability theory, the binomial model, the multinomial model, and methods for comparing different experimental conditions or groups. It then turns its focus to distribution-free statistics that are based on having ranked data, examining data from experimental studies and rank-based correlative methods. Each chapter includes exercises that help readers achieve a more complete understanding of the material. The book devotes considerable attention not only to the linkage of statistics to practices in experimental science but also to the theoretical foundations of statistics. Frequentist statistical practices often violate their own theoretical premises. The beauty of Bayesian statistics, readers will learn, is that it is an internally coherent system of scientific inference that can be proved from probability theory.