Author: Peter Goos
Publisher: John Wiley & Sons
ISBN: 1119976162
Category : Science
Languages : en
Pages : 249
Book Description
"This is an engaging and informative book on the modern practice of experimental design. The authors' writing style is entertaining, the consulting dialogs are extremely enjoyable, and the technical material is presented brilliantly but not overwhelmingly. The book is a joy to read. Everyone who practices or teaches DOE should read this book." - Douglas C. Montgomery, Regents Professor, Department of Industrial Engineering, Arizona State University "It's been said: 'Design for the experiment, don't experiment for the design.' This book ably demonstrates this notion by showing how tailor-made, optimal designs can be effectively employed to meet a client's actual needs. It should be required reading for anyone interested in using the design of experiments in industrial settings." —Christopher J. Nachtsheim, Frank A Donaldson Chair in Operations Management, Carlson School of Management, University of Minnesota This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities? While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain.
Optimal Design of Experiments
Author: Peter Goos
Publisher: John Wiley & Sons
ISBN: 1119976162
Category : Science
Languages : en
Pages : 249
Book Description
"This is an engaging and informative book on the modern practice of experimental design. The authors' writing style is entertaining, the consulting dialogs are extremely enjoyable, and the technical material is presented brilliantly but not overwhelmingly. The book is a joy to read. Everyone who practices or teaches DOE should read this book." - Douglas C. Montgomery, Regents Professor, Department of Industrial Engineering, Arizona State University "It's been said: 'Design for the experiment, don't experiment for the design.' This book ably demonstrates this notion by showing how tailor-made, optimal designs can be effectively employed to meet a client's actual needs. It should be required reading for anyone interested in using the design of experiments in industrial settings." —Christopher J. Nachtsheim, Frank A Donaldson Chair in Operations Management, Carlson School of Management, University of Minnesota This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities? While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain.
Publisher: John Wiley & Sons
ISBN: 1119976162
Category : Science
Languages : en
Pages : 249
Book Description
"This is an engaging and informative book on the modern practice of experimental design. The authors' writing style is entertaining, the consulting dialogs are extremely enjoyable, and the technical material is presented brilliantly but not overwhelmingly. The book is a joy to read. Everyone who practices or teaches DOE should read this book." - Douglas C. Montgomery, Regents Professor, Department of Industrial Engineering, Arizona State University "It's been said: 'Design for the experiment, don't experiment for the design.' This book ably demonstrates this notion by showing how tailor-made, optimal designs can be effectively employed to meet a client's actual needs. It should be required reading for anyone interested in using the design of experiments in industrial settings." —Christopher J. Nachtsheim, Frank A Donaldson Chair in Operations Management, Carlson School of Management, University of Minnesota This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities? While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain.
Optimal Design of Experiments
Author: Friedrich Pukelsheim
Publisher: SIAM
ISBN: 0898716047
Category : Mathematics
Languages : en
Pages : 527
Book Description
Optimal Design of Experiments offers a rare blend of linear algebra, convex analysis, and statistics. The optimal design for statistical experiments is first formulated as a concave matrix optimization problem. Using tools from convex analysis, the problem is solved generally for a wide class of optimality criteria such as D-, A-, or E-optimality. The book then offers a complementary approach that calls for the study of the symmetry properties of the design problem, exploiting such notions as matrix majorization and the Kiefer matrix ordering. The results are illustrated with optimal designs for polynomial fit models, Bayes designs, balanced incomplete block designs, exchangeable designs on the cube, rotatable designs on the sphere, and many other examples.
Publisher: SIAM
ISBN: 0898716047
Category : Mathematics
Languages : en
Pages : 527
Book Description
Optimal Design of Experiments offers a rare blend of linear algebra, convex analysis, and statistics. The optimal design for statistical experiments is first formulated as a concave matrix optimization problem. Using tools from convex analysis, the problem is solved generally for a wide class of optimality criteria such as D-, A-, or E-optimality. The book then offers a complementary approach that calls for the study of the symmetry properties of the design problem, exploiting such notions as matrix majorization and the Kiefer matrix ordering. The results are illustrated with optimal designs for polynomial fit models, Bayes designs, balanced incomplete block designs, exchangeable designs on the cube, rotatable designs on the sphere, and many other examples.
Optimal Experimental Design with R
Author: Dieter Rasch
Publisher: CRC Press
ISBN: 1439816980
Category : Mathematics
Languages : en
Pages : 345
Book Description
Experimental design is often overlooked in the literature of applied and mathematical statistics: statistics is taught and understood as merely a collection of methods for analyzing data. Consequently, experimenters seldom think about optimal design, including prerequisites such as the necessary sample size needed for a precise answer for an experi
Publisher: CRC Press
ISBN: 1439816980
Category : Mathematics
Languages : en
Pages : 345
Book Description
Experimental design is often overlooked in the literature of applied and mathematical statistics: statistics is taught and understood as merely a collection of methods for analyzing data. Consequently, experimenters seldom think about optimal design, including prerequisites such as the necessary sample size needed for a precise answer for an experi
Optimal Experimental Design for Non-Linear Models
Author: Christos P. Kitsos
Publisher: Springer Science & Business Media
ISBN: 3642452876
Category : Mathematics
Languages : en
Pages : 104
Book Description
This book tackles the Optimal Non-Linear Experimental Design problem from an applications perspective. At the same time it offers extensive mathematical background material that avoids technicalities, making it accessible to non-mathematicians: Biologists, Medical Statisticians, Sociologists, Engineers, Chemists and Physicists will find new approaches to conducting their experiments. The book is recommended for Graduate Students and Researchers.
Publisher: Springer Science & Business Media
ISBN: 3642452876
Category : Mathematics
Languages : en
Pages : 104
Book Description
This book tackles the Optimal Non-Linear Experimental Design problem from an applications perspective. At the same time it offers extensive mathematical background material that avoids technicalities, making it accessible to non-mathematicians: Biologists, Medical Statisticians, Sociologists, Engineers, Chemists and Physicists will find new approaches to conducting their experiments. The book is recommended for Graduate Students and Researchers.
Foundations of Optimum Experimental Design
Author: Andrej Pázman
Publisher: Springer
ISBN:
Category : Computers
Languages : en
Pages : 256
Book Description
Introductory remarks about the experiment and its disign. The regression model and methods of estimation. The ordering of designs and the properties of variaces of estimates. Optimality critaria in the regression model. Iterative computation of optimum desings Design of experiments in particular cases. The functional model and measurements of physical fields.
Publisher: Springer
ISBN:
Category : Computers
Languages : en
Pages : 256
Book Description
Introductory remarks about the experiment and its disign. The regression model and methods of estimation. The ordering of designs and the properties of variaces of estimates. Optimality critaria in the regression model. Iterative computation of optimum desings Design of experiments in particular cases. The functional model and measurements of physical fields.
Theory Of Optimal Experiments
Author: V.V. Fedorov
Publisher: Elsevier
ISBN: 0323162460
Category : Technology & Engineering
Languages : en
Pages : 307
Book Description
Theory Of Optimal Experiments
Publisher: Elsevier
ISBN: 0323162460
Category : Technology & Engineering
Languages : en
Pages : 307
Book Description
Theory Of Optimal Experiments
Theory of Optimal Designs
Author: Kirti R. Shah
Publisher: Springer Science & Business Media
ISBN: 1461236622
Category : Mathematics
Languages : en
Pages : 179
Book Description
There has been an enormous growth in recent years in the literature on discrete optimal designs. The optimality problems have been formulated in various models arising in the experimental designs and substantial progress has been made towards solving some of these. The subject has now reached a stage of completeness which calls for a self-contained monograph on this topic. The aim of this monograph is to present the state of the art and to focus on more recent advances in this rapidly developing area. We start with a discussion of statistical optimality criteria in Chapter One. Chapters Two and Three deal with optimal block designs. Row-column designs are dealt with in Chapter Four. In Chapter Five we deal with optimal designs with mixed effects models. Repeated measurement designs are considered in Chapter Six. Chapter Seven deals with some special situations and Weighing designs are dis cussed in Chapter Eight. We have endeavoured to include all the major developments that have taken place in the last three decades. The book should be of use to research workers in several areas including combinatorics as well as to the experimenters in diverse fields of applications. Since the details of the construction of the designs are available in excellent books, we have only pointed out the designs which have optimality proper ties. We believe, this will be adequate for the experimenters.
Publisher: Springer Science & Business Media
ISBN: 1461236622
Category : Mathematics
Languages : en
Pages : 179
Book Description
There has been an enormous growth in recent years in the literature on discrete optimal designs. The optimality problems have been formulated in various models arising in the experimental designs and substantial progress has been made towards solving some of these. The subject has now reached a stage of completeness which calls for a self-contained monograph on this topic. The aim of this monograph is to present the state of the art and to focus on more recent advances in this rapidly developing area. We start with a discussion of statistical optimality criteria in Chapter One. Chapters Two and Three deal with optimal block designs. Row-column designs are dealt with in Chapter Four. In Chapter Five we deal with optimal designs with mixed effects models. Repeated measurement designs are considered in Chapter Six. Chapter Seven deals with some special situations and Weighing designs are dis cussed in Chapter Eight. We have endeavoured to include all the major developments that have taken place in the last three decades. The book should be of use to research workers in several areas including combinatorics as well as to the experimenters in diverse fields of applications. Since the details of the construction of the designs are available in excellent books, we have only pointed out the designs which have optimality proper ties. We believe, this will be adequate for the experimenters.
Optimal Mixture Experiments
Author: B.K. Sinha
Publisher: Springer
ISBN: 8132217861
Category : Mathematics
Languages : en
Pages : 213
Book Description
The book dwells mainly on the optimality aspects of mixture designs. As mixture models are a special case of regression models, a general discussion on regression designs has been presented, which includes topics like continuous designs, de la Garza phenomenon, Loewner order domination, Equivalence theorems for different optimality criteria and standard optimality results for single variable polynomial regression and multivariate linear and quadratic regression models. This is followed by a review of the available literature on estimation of parameters in mixture models. Based on recent research findings, the volume also introduces optimal mixture designs for estimation of optimum mixing proportions in different mixture models, which include Scheffé’s quadratic model, Darroch-Waller model, log- contrast model, mixture-amount models, random coefficient models and multi-response model. Robust mixture designs and mixture designs in blocks have been also reviewed. Moreover, some applications of mixture designs in areas like agriculture, pharmaceutics and food and beverages have been presented. Familiarity with the basic concepts of design and analysis of experiments, along with the concept of optimality criteria are desirable prerequisites for a clear understanding of the book. It is likely to be helpful to both theoreticians and practitioners working in the area of mixture experiments.
Publisher: Springer
ISBN: 8132217861
Category : Mathematics
Languages : en
Pages : 213
Book Description
The book dwells mainly on the optimality aspects of mixture designs. As mixture models are a special case of regression models, a general discussion on regression designs has been presented, which includes topics like continuous designs, de la Garza phenomenon, Loewner order domination, Equivalence theorems for different optimality criteria and standard optimality results for single variable polynomial regression and multivariate linear and quadratic regression models. This is followed by a review of the available literature on estimation of parameters in mixture models. Based on recent research findings, the volume also introduces optimal mixture designs for estimation of optimum mixing proportions in different mixture models, which include Scheffé’s quadratic model, Darroch-Waller model, log- contrast model, mixture-amount models, random coefficient models and multi-response model. Robust mixture designs and mixture designs in blocks have been also reviewed. Moreover, some applications of mixture designs in areas like agriculture, pharmaceutics and food and beverages have been presented. Familiarity with the basic concepts of design and analysis of experiments, along with the concept of optimality criteria are desirable prerequisites for a clear understanding of the book. It is likely to be helpful to both theoreticians and practitioners working in the area of mixture experiments.
Sequential Analysis
Author: Abraham Wald
Publisher: Courier Corporation
ISBN: 0486783235
Category : Mathematics
Languages : en
Pages : 228
Book Description
The first to solve the general problem of sequential tests of statistical hypotheses, the author of this text explains his revolutionary theory of the sequential probability ratio test and its applications. 1947 edition.
Publisher: Courier Corporation
ISBN: 0486783235
Category : Mathematics
Languages : en
Pages : 228
Book Description
The first to solve the general problem of sequential tests of statistical hypotheses, the author of this text explains his revolutionary theory of the sequential probability ratio test and its applications. 1947 edition.
The Construction of Optimal Stated Choice Experiments
Author: Deborah J. Street
Publisher: John Wiley & Sons
ISBN: 0470148551
Category : Mathematics
Languages : en
Pages : 344
Book Description
The most comprehensive and applied discussion of stated choice experiment constructions available The Construction of Optimal Stated Choice Experiments provides an accessible introduction to the construction methods needed to create the best possible designs for use in modeling decision-making. Many aspects of the design of a generic stated choice experiment are independent of its area of application, and until now there has been no single book describing these constructions. This book begins with a brief description of the various areas where stated choice experiments are applicable, including marketing and health economics, transportation, environmental resource economics, and public welfare analysis. The authors focus on recent research results on the construction of optimal and near-optimal choice experiments and conclude with guidelines and insight on how to properly implement these results. Features of the book include: Construction of generic stated choice experiments for the estimation of main effects only, as well as experiments for the estimation of main effects plus two-factor interactions Constructions for choice sets of any size and for attributes with any number of levels A discussion of designs that contain a none option or a common base option Practical techniques for the implementation of the constructions Class-tested material that presents theoretical discussion of optimal design Complete and extensive references to the mathematical and statistical literature for the constructions Exercise sets in most chapters, which reinforce the understanding of the presented material The Construction of Optimal Stated Choice Experiments serves as an invaluable reference guide for applied statisticians and practitioners in the areas of marketing, health economics, transport, and environmental evaluation. It is also ideal as a supplemental text for courses in the design of experiments, decision support systems, and choice models. A companion web site is available for readers to access web-based software that can be used to implement the constructions described in the book.
Publisher: John Wiley & Sons
ISBN: 0470148551
Category : Mathematics
Languages : en
Pages : 344
Book Description
The most comprehensive and applied discussion of stated choice experiment constructions available The Construction of Optimal Stated Choice Experiments provides an accessible introduction to the construction methods needed to create the best possible designs for use in modeling decision-making. Many aspects of the design of a generic stated choice experiment are independent of its area of application, and until now there has been no single book describing these constructions. This book begins with a brief description of the various areas where stated choice experiments are applicable, including marketing and health economics, transportation, environmental resource economics, and public welfare analysis. The authors focus on recent research results on the construction of optimal and near-optimal choice experiments and conclude with guidelines and insight on how to properly implement these results. Features of the book include: Construction of generic stated choice experiments for the estimation of main effects only, as well as experiments for the estimation of main effects plus two-factor interactions Constructions for choice sets of any size and for attributes with any number of levels A discussion of designs that contain a none option or a common base option Practical techniques for the implementation of the constructions Class-tested material that presents theoretical discussion of optimal design Complete and extensive references to the mathematical and statistical literature for the constructions Exercise sets in most chapters, which reinforce the understanding of the presented material The Construction of Optimal Stated Choice Experiments serves as an invaluable reference guide for applied statisticians and practitioners in the areas of marketing, health economics, transport, and environmental evaluation. It is also ideal as a supplemental text for courses in the design of experiments, decision support systems, and choice models. A companion web site is available for readers to access web-based software that can be used to implement the constructions described in the book.