Author: Michael J. Grimble
Publisher: John Wiley & Sons
ISBN: 0470020741
Category : Science
Languages : en
Pages : 698
Book Description
Robust Industrial Control Systems: Optimal Design Approach for Polynomial Systems presents a comprehensive introduction to the use of frequency domain and polynomial system design techniques for a range of industrial control and signal processing applications. The solution of stochastic and robust optimal control problems is considered, building up from single-input problems and gradually developing the results for multivariable design of the later chapters. In addition to cataloguing many of the results in polynomial systems needed to calculate industrial controllers and filters, basic design procedures are also introduced which enable cost functions and system descriptions to be specified in order to satisfy industrial requirements. Providing a range of solutions to control and signal processing problems, this book: * Presents a comprehensive introduction to the polynomial systems approach for the solution of H_2 and H_infinity optimal control problems. * Develops robust control design procedures using frequency domain methods. * Demonstrates design examples for gas turbines, marine systems, metal processing, flight control, wind turbines, process control and manufacturing systems. * Includes the analysis of multi-degrees of freedom controllers and the computation of restricted structure controllers that are simple to implement. * Considers time-varying control and signal processing problems. * Addresses the control of non-linear processes using both multiple model concepts and new optimal control solutions. Robust Industrial Control Systems: Optimal Design Approach for Polynomial Systems is essential reading for professional engineers requiring an introduction to optimal control theory and insights into its use in the design of real industrial processes. Students and researchers in the field will also find it an excellent reference tool.
Robust Industrial Control Systems
Author: Michael J. Grimble
Publisher: John Wiley & Sons
ISBN: 0470020741
Category : Science
Languages : en
Pages : 698
Book Description
Robust Industrial Control Systems: Optimal Design Approach for Polynomial Systems presents a comprehensive introduction to the use of frequency domain and polynomial system design techniques for a range of industrial control and signal processing applications. The solution of stochastic and robust optimal control problems is considered, building up from single-input problems and gradually developing the results for multivariable design of the later chapters. In addition to cataloguing many of the results in polynomial systems needed to calculate industrial controllers and filters, basic design procedures are also introduced which enable cost functions and system descriptions to be specified in order to satisfy industrial requirements. Providing a range of solutions to control and signal processing problems, this book: * Presents a comprehensive introduction to the polynomial systems approach for the solution of H_2 and H_infinity optimal control problems. * Develops robust control design procedures using frequency domain methods. * Demonstrates design examples for gas turbines, marine systems, metal processing, flight control, wind turbines, process control and manufacturing systems. * Includes the analysis of multi-degrees of freedom controllers and the computation of restricted structure controllers that are simple to implement. * Considers time-varying control and signal processing problems. * Addresses the control of non-linear processes using both multiple model concepts and new optimal control solutions. Robust Industrial Control Systems: Optimal Design Approach for Polynomial Systems is essential reading for professional engineers requiring an introduction to optimal control theory and insights into its use in the design of real industrial processes. Students and researchers in the field will also find it an excellent reference tool.
Publisher: John Wiley & Sons
ISBN: 0470020741
Category : Science
Languages : en
Pages : 698
Book Description
Robust Industrial Control Systems: Optimal Design Approach for Polynomial Systems presents a comprehensive introduction to the use of frequency domain and polynomial system design techniques for a range of industrial control and signal processing applications. The solution of stochastic and robust optimal control problems is considered, building up from single-input problems and gradually developing the results for multivariable design of the later chapters. In addition to cataloguing many of the results in polynomial systems needed to calculate industrial controllers and filters, basic design procedures are also introduced which enable cost functions and system descriptions to be specified in order to satisfy industrial requirements. Providing a range of solutions to control and signal processing problems, this book: * Presents a comprehensive introduction to the polynomial systems approach for the solution of H_2 and H_infinity optimal control problems. * Develops robust control design procedures using frequency domain methods. * Demonstrates design examples for gas turbines, marine systems, metal processing, flight control, wind turbines, process control and manufacturing systems. * Includes the analysis of multi-degrees of freedom controllers and the computation of restricted structure controllers that are simple to implement. * Considers time-varying control and signal processing problems. * Addresses the control of non-linear processes using both multiple model concepts and new optimal control solutions. Robust Industrial Control Systems: Optimal Design Approach for Polynomial Systems is essential reading for professional engineers requiring an introduction to optimal control theory and insights into its use in the design of real industrial processes. Students and researchers in the field will also find it an excellent reference tool.
Optimal Design of Control Systems
Author: Gennadii E. Kolosov
Publisher: CRC Press
ISBN: 1000103323
Category : Mathematics
Languages : en
Pages : 420
Book Description
"Covers design methods for optimal (or quasioptimal) control algorithms in the form of synthesis for deterministic and stochastic dynamical systems-with applications in aerospace, robotic, and servomechanical technologies. Providing new results on exact and approximate solutions of optimal control problems."
Publisher: CRC Press
ISBN: 1000103323
Category : Mathematics
Languages : en
Pages : 420
Book Description
"Covers design methods for optimal (or quasioptimal) control algorithms in the form of synthesis for deterministic and stochastic dynamical systems-with applications in aerospace, robotic, and servomechanical technologies. Providing new results on exact and approximate solutions of optimal control problems."
Control System Design
Author: Bernard Friedland
Publisher: Courier Corporation
ISBN: 048613511X
Category : Science
Languages : en
Pages : 530
Book Description
Introduction to state-space methods covers feedback control; state-space representation of dynamic systems and dynamics of linear systems; frequency-domain analysis; controllability and observability; shaping the dynamic response; more. 1986 edition.
Publisher: Courier Corporation
ISBN: 048613511X
Category : Science
Languages : en
Pages : 530
Book Description
Introduction to state-space methods covers feedback control; state-space representation of dynamic systems and dynamics of linear systems; frequency-domain analysis; controllability and observability; shaping the dynamic response; more. 1986 edition.
Applications of Optimal Control Theory to Computer Controller Design
Author: William S. Widnall
Publisher: MIT Press (MA)
ISBN:
Category : Computers
Languages : en
Pages : 232
Book Description
Publisher: MIT Press (MA)
ISBN:
Category : Computers
Languages : en
Pages : 232
Book Description
Optimal and Robust Scheduling for Networked Control Systems
Author: Stefano Longo
Publisher: CRC Press
ISBN: 1466569549
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
Optimal and Robust Scheduling for Networked Control Systems tackles the problem of integrating system components—controllers, sensors, and actuators—in a networked control system. It is common practice in industry to solve such problems heuristically, because the few theoretical results available are not comprehensive and cannot be readily applied by practitioners. This book offers a solution to the deterministic scheduling problem that is based on rigorous control theoretical tools but also addresses practical implementation issues. Helping to bridge the gap between control theory and computer science, it suggests that the consideration of communication constraints at the design stage will significantly improve the performance of the control system. Technical Results, Design Techniques, and Practical Applications The book brings together well-known measures for robust performance as well as fast stochastic algorithms to assist designers in selecting the best network configuration and guaranteeing the speed of offline optimization. The authors propose a unifying framework for modelling NCSs with time-triggered communication and present technical results. They also introduce design techniques, including for the codesign of a controller and communication sequence and for the robust design of a communication sequence for a given controller. Case studies explore the use of the FlexRay TDMA and time-triggered control area network (CAN) protocols in an automotive control system. Practical Solutions to Your Time-Triggered Communication Problems This unique book develops ready-to-use engineering tools for large-scale control system integration with a focus on robustness and performance. It emphasizes techniques that are directly applicable to time-triggered communication problems in the automotive industry and in avionics, robotics, and automated manufacturing.
Publisher: CRC Press
ISBN: 1466569549
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
Optimal and Robust Scheduling for Networked Control Systems tackles the problem of integrating system components—controllers, sensors, and actuators—in a networked control system. It is common practice in industry to solve such problems heuristically, because the few theoretical results available are not comprehensive and cannot be readily applied by practitioners. This book offers a solution to the deterministic scheduling problem that is based on rigorous control theoretical tools but also addresses practical implementation issues. Helping to bridge the gap between control theory and computer science, it suggests that the consideration of communication constraints at the design stage will significantly improve the performance of the control system. Technical Results, Design Techniques, and Practical Applications The book brings together well-known measures for robust performance as well as fast stochastic algorithms to assist designers in selecting the best network configuration and guaranteeing the speed of offline optimization. The authors propose a unifying framework for modelling NCSs with time-triggered communication and present technical results. They also introduce design techniques, including for the codesign of a controller and communication sequence and for the robust design of a communication sequence for a given controller. Case studies explore the use of the FlexRay TDMA and time-triggered control area network (CAN) protocols in an automotive control system. Practical Solutions to Your Time-Triggered Communication Problems This unique book develops ready-to-use engineering tools for large-scale control system integration with a focus on robustness and performance. It emphasizes techniques that are directly applicable to time-triggered communication problems in the automotive industry and in avionics, robotics, and automated manufacturing.
Robust Control Design: An Optimal Control Approach
Author: Feng Lin
Publisher: John Wiley & Sons
ISBN: 9780470059562
Category : Science
Languages : en
Pages : 378
Book Description
Comprehensive and accessible guide to the three main approaches to robust control design and its applications Optimal control is a mathematical field that is concerned with control policies that can be deduced using optimization algorithms. The optimal control approach to robust control design differs from conventional direct approaches to robust control that are more commonly discussed by firstly translating the robust control problem into its optimal control counterpart, and then solving the optimal control problem. Robust Control Design: An Optimal Control Approach offers a complete presentation of this approach to robust control design, presenting modern control theory in an concise manner. The other two major approaches to robust control design, the H_infinite approach and the Kharitonov approach, are also covered and described in the simplest terms possible, in order to provide a complete overview of the area. It includes up-to-date research, and offers both theoretical and practical applications that include flexible structures, robotics, and automotive and aircraft control. Robust Control Design: An Optimal Control Approach will be of interest to those needing an introductory textbook on robust control theory, design and applications as well as graduate and postgraduate students involved in systems and control research. Practitioners will also find the applications presented useful when solving practical problems in the engineering field.
Publisher: John Wiley & Sons
ISBN: 9780470059562
Category : Science
Languages : en
Pages : 378
Book Description
Comprehensive and accessible guide to the three main approaches to robust control design and its applications Optimal control is a mathematical field that is concerned with control policies that can be deduced using optimization algorithms. The optimal control approach to robust control design differs from conventional direct approaches to robust control that are more commonly discussed by firstly translating the robust control problem into its optimal control counterpart, and then solving the optimal control problem. Robust Control Design: An Optimal Control Approach offers a complete presentation of this approach to robust control design, presenting modern control theory in an concise manner. The other two major approaches to robust control design, the H_infinite approach and the Kharitonov approach, are also covered and described in the simplest terms possible, in order to provide a complete overview of the area. It includes up-to-date research, and offers both theoretical and practical applications that include flexible structures, robotics, and automotive and aircraft control. Robust Control Design: An Optimal Control Approach will be of interest to those needing an introductory textbook on robust control theory, design and applications as well as graduate and postgraduate students involved in systems and control research. Practitioners will also find the applications presented useful when solving practical problems in the engineering field.
Design Optimization of Active and Passive Structural Control Systems
Author: Nikos D. Lagaros
Publisher:
ISBN: 9781466620315
Category : Structural control (Engineering)
Languages : en
Pages : 396
Book Description
"This book addresses the design optimization of active and passive control systems including earthquake engineering and tuned mass damper research topics and their link"--
Publisher:
ISBN: 9781466620315
Category : Structural control (Engineering)
Languages : en
Pages : 396
Book Description
"This book addresses the design optimization of active and passive control systems including earthquake engineering and tuned mass damper research topics and their link"--
Control System Design
Author: Graham Clifford Goodwin
Publisher: Pearson
ISBN:
Category : Computers
Languages : en
Pages : 952
Book Description
For both undergraduate and graduate courses in Control System Design. Using a "how to do it" approach with a strong emphasis on real-world design, this text provides comprehensive, single-source coverage of the full spectrum of control system design. Each of the text's 8 parts covers an area in control--ranging from signals and systems (Bode Diagrams, Root Locus, etc.), to SISO control (including PID and Fundamental Design Trade-Offs) and MIMO systems (including Constraints, MPC, Decoupling, etc.).
Publisher: Pearson
ISBN:
Category : Computers
Languages : en
Pages : 952
Book Description
For both undergraduate and graduate courses in Control System Design. Using a "how to do it" approach with a strong emphasis on real-world design, this text provides comprehensive, single-source coverage of the full spectrum of control system design. Each of the text's 8 parts covers an area in control--ranging from signals and systems (Bode Diagrams, Root Locus, etc.), to SISO control (including PID and Fundamental Design Trade-Offs) and MIMO systems (including Constraints, MPC, Decoupling, etc.).
Nonlinear and Optimal Control Systems
Author: Thomas L. Vincent
Publisher: John Wiley & Sons
ISBN: 9780471042358
Category : Science
Languages : en
Pages : 584
Book Description
Designed for one-semester introductory senior-or graduate-level course, the authors provide the student with an introduction of analysis techniques used in the design of nonlinear and optimal feedback control systems. There is special emphasis on the fundamental topics of stability, controllability, and optimality, and on the corresponding geometry associated with these topics. Each chapter contains several examples and a variety of exercises.
Publisher: John Wiley & Sons
ISBN: 9780471042358
Category : Science
Languages : en
Pages : 584
Book Description
Designed for one-semester introductory senior-or graduate-level course, the authors provide the student with an introduction of analysis techniques used in the design of nonlinear and optimal feedback control systems. There is special emphasis on the fundamental topics of stability, controllability, and optimality, and on the corresponding geometry associated with these topics. Each chapter contains several examples and a variety of exercises.
Principles of Optimal Design
Author: Panos Y. Papalambros
Publisher: Cambridge University Press
ISBN: 9780521627276
Category : Mathematics
Languages : en
Pages : 416
Book Description
Principles of Optimal Design puts the concept of optimal design on a rigorous foundation and demonstrates the intimate relationship between the mathematical model that describes a design and the solution methods that optimize it. Since the first edition was published, computers have become ever more powerful, design engineers are tackling more complex systems, and the term optimization is now routinely used to denote a design process with increased speed and quality. This second edition takes account of these developments and brings the original text thoroughly up to date. The book now includes a discussion of trust region and convex approximation algorithms. A new chapter focuses on how to construct optimal design models. Three new case studies illustrate the creation of optimization models. The final chapter on optimization practice has been expanded to include computation of derivatives, interpretation of algorithmic results, and selection of algorithms and software. Both students and practising engineers will find this book a valuable resource for design project work.
Publisher: Cambridge University Press
ISBN: 9780521627276
Category : Mathematics
Languages : en
Pages : 416
Book Description
Principles of Optimal Design puts the concept of optimal design on a rigorous foundation and demonstrates the intimate relationship between the mathematical model that describes a design and the solution methods that optimize it. Since the first edition was published, computers have become ever more powerful, design engineers are tackling more complex systems, and the term optimization is now routinely used to denote a design process with increased speed and quality. This second edition takes account of these developments and brings the original text thoroughly up to date. The book now includes a discussion of trust region and convex approximation algorithms. A new chapter focuses on how to construct optimal design models. Three new case studies illustrate the creation of optimization models. The final chapter on optimization practice has been expanded to include computation of derivatives, interpretation of algorithmic results, and selection of algorithms and software. Both students and practising engineers will find this book a valuable resource for design project work.