Author: Harekrushna Sahoo
Publisher: Springer Nature
ISBN: 9811645507
Category : Science
Languages : en
Pages : 260
Book Description
This book illustrates the significance of various optical spectroscopy and microscopy techniques, including absorption spectroscopy, fluorescence spectroscopy, infrared spectroscopy, and Raman spectroscopy for deciphering the nature of biological molecules. The content of this book chiefly focuses on (1) the principle, theory, and instrumentation used in different optical spectroscopy techniques, and (2) the application of these techniques in exploring the nature of different biomolecules (e.g., proteins, nucleic acids, enzymes, and carbohydrates). It emphasizes the structural, conformational and dynamic, and kinetic including the changes in biomolecules under a range of conditions. In closing, the book summarizes recent advances in the field of optical spectroscopic and microscopic techniques.
Optical Spectroscopic and Microscopic Techniques
Author: Harekrushna Sahoo
Publisher: Springer Nature
ISBN: 9811645507
Category : Science
Languages : en
Pages : 260
Book Description
This book illustrates the significance of various optical spectroscopy and microscopy techniques, including absorption spectroscopy, fluorescence spectroscopy, infrared spectroscopy, and Raman spectroscopy for deciphering the nature of biological molecules. The content of this book chiefly focuses on (1) the principle, theory, and instrumentation used in different optical spectroscopy techniques, and (2) the application of these techniques in exploring the nature of different biomolecules (e.g., proteins, nucleic acids, enzymes, and carbohydrates). It emphasizes the structural, conformational and dynamic, and kinetic including the changes in biomolecules under a range of conditions. In closing, the book summarizes recent advances in the field of optical spectroscopic and microscopic techniques.
Publisher: Springer Nature
ISBN: 9811645507
Category : Science
Languages : en
Pages : 260
Book Description
This book illustrates the significance of various optical spectroscopy and microscopy techniques, including absorption spectroscopy, fluorescence spectroscopy, infrared spectroscopy, and Raman spectroscopy for deciphering the nature of biological molecules. The content of this book chiefly focuses on (1) the principle, theory, and instrumentation used in different optical spectroscopy techniques, and (2) the application of these techniques in exploring the nature of different biomolecules (e.g., proteins, nucleic acids, enzymes, and carbohydrates). It emphasizes the structural, conformational and dynamic, and kinetic including the changes in biomolecules under a range of conditions. In closing, the book summarizes recent advances in the field of optical spectroscopic and microscopic techniques.
Optical Microscopic and Spectroscopic Techniques Targeting Biological Applications
Author: Vicente Micó
Publisher: Frontiers Media SA
ISBN: 288971523X
Category : Science
Languages : en
Pages : 221
Book Description
Publisher: Frontiers Media SA
ISBN: 288971523X
Category : Science
Languages : en
Pages : 221
Book Description
Lasers and Current Optical Techniques in Biology
Author: Giuseppe Palumbo
Publisher: Royal Society of Chemistry
ISBN: 9780854043217
Category : Medical
Languages : en
Pages : 688
Book Description
The wide range of topics covered make this book of interest to a diverse range of scientific communities.
Publisher: Royal Society of Chemistry
ISBN: 9780854043217
Category : Medical
Languages : en
Pages : 688
Book Description
The wide range of topics covered make this book of interest to a diverse range of scientific communities.
Principles of Nonlinear Optical Spectroscopy
Author: Shaul Mukamel
Publisher: Oxford University Press on Demand
ISBN: 9780195132915
Category : Science
Languages : en
Pages : 543
Book Description
This textbook presents a systematic and unifying viewpoint for a wide class of nonlinear spectroscopic techniques in time domain and frequency domain. It is directed towards active researchers in physics, optics, chemistry, and materials science, as well as graduate students who enter this complex and rapidly developing field. Nonlinear optical interactions of laser fields with matter provide powerful spectroscopic tools for the understanding of microscopic interactions and dynamic processes. One of the major obstacles facing researchers in this field, however, is the flood of experimental techniques and terminologies, which create a serious language barrier. The general microscopic correlation function approach to the nonlinear optical response developed in this book is essential for understanding the relationships among different techniques and a comparison of their information content, the design of new measurements, and for a systematic comparison of the optical response of different systems such as dyes in solutions, atoms and molecules in the gas phase, liquids, molecular aggregates and superlatives, and semiconductor nanostructures. The approach is based on formulating the nonlinear response by representing the state of matter by the density matrix and following its evolution on Liouville space. Current active research areas such as femtosecond time-domain techniques, semi-classical and wave-packet dynamics, pulse shaping, pulse locking, exciton confinement, and the interplay of electronic, nuclear and field coherence are emphasized. The material has been developed from the author's highly successful interdisciplinary course at the University of Rochester attended by science and engineering graduate students.
Publisher: Oxford University Press on Demand
ISBN: 9780195132915
Category : Science
Languages : en
Pages : 543
Book Description
This textbook presents a systematic and unifying viewpoint for a wide class of nonlinear spectroscopic techniques in time domain and frequency domain. It is directed towards active researchers in physics, optics, chemistry, and materials science, as well as graduate students who enter this complex and rapidly developing field. Nonlinear optical interactions of laser fields with matter provide powerful spectroscopic tools for the understanding of microscopic interactions and dynamic processes. One of the major obstacles facing researchers in this field, however, is the flood of experimental techniques and terminologies, which create a serious language barrier. The general microscopic correlation function approach to the nonlinear optical response developed in this book is essential for understanding the relationships among different techniques and a comparison of their information content, the design of new measurements, and for a systematic comparison of the optical response of different systems such as dyes in solutions, atoms and molecules in the gas phase, liquids, molecular aggregates and superlatives, and semiconductor nanostructures. The approach is based on formulating the nonlinear response by representing the state of matter by the density matrix and following its evolution on Liouville space. Current active research areas such as femtosecond time-domain techniques, semi-classical and wave-packet dynamics, pulse shaping, pulse locking, exciton confinement, and the interplay of electronic, nuclear and field coherence are emphasized. The material has been developed from the author's highly successful interdisciplinary course at the University of Rochester attended by science and engineering graduate students.
Second Harmonic Generation Imaging
Author: Francesco S. Pavone
Publisher: Taylor & Francis
ISBN: 1439849153
Category : Science
Languages : en
Pages : 465
Book Description
Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical a
Publisher: Taylor & Francis
ISBN: 1439849153
Category : Science
Languages : en
Pages : 465
Book Description
Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical a
Materials Characterization
Author: Yang Leng
Publisher: John Wiley & Sons
ISBN: 0470822996
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
This book covers state-of-the-art techniques commonly used in modern materials characterization. Two important aspects of characterization, materials structures and chemical analysis, are included. Widely used techniques, such as metallography (light microscopy), X-ray diffraction, transmission and scanning electron microscopy, are described. In addition, the book introduces advanced techniques, including scanning probe microscopy. The second half of the book accordingly presents techniques such as X-ray energy dispersive spectroscopy (commonly equipped in the scanning electron microscope), fluorescence X-ray spectroscopy, and popular surface analysis techniques (XPS and SIMS). Finally, vibrational spectroscopy (FTIR and Raman) and thermal analysis are also covered.
Publisher: John Wiley & Sons
ISBN: 0470822996
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
This book covers state-of-the-art techniques commonly used in modern materials characterization. Two important aspects of characterization, materials structures and chemical analysis, are included. Widely used techniques, such as metallography (light microscopy), X-ray diffraction, transmission and scanning electron microscopy, are described. In addition, the book introduces advanced techniques, including scanning probe microscopy. The second half of the book accordingly presents techniques such as X-ray energy dispersive spectroscopy (commonly equipped in the scanning electron microscope), fluorescence X-ray spectroscopy, and popular surface analysis techniques (XPS and SIMS). Finally, vibrational spectroscopy (FTIR and Raman) and thermal analysis are also covered.
Handbook of Biomedical Nonlinear Optical Microscopy
Author: Barry R. Masters
Publisher: Oxford University Press
ISBN: 0198036825
Category : Science
Languages : en
Pages : 895
Book Description
The Handbook of Biomedical Nonlinear Optical Microscopy provides comprehensive treatment of the theories, techniques, and biomedical applications of nonlinear optics and microscopy for cell biologists, life scientists, biomedical engineers, and clinicians. The chapters are separated into basic and advanced sections, and provide both textual and graphical illustrations of all key concepts. The more basic sections are aimed at life scientists without advanced training in physics and mathematics, and tutorials are provided for the more challenging sections. The first part of the Handbook introduces the historical context of nonlinear microscopy. The second part presents the nonlinear optical theory of two- and multiphoton excited fluorescence (TPE, MPE) spectroscopy, second and third harmonic generation (SHG, THG) spectroscopy, and coherent anti-Stokes Raman spectroscopy (CARS). The third part introduces modern microscopic and spectroscopic instrumentation and techniques that are based on nonlinear optics. The fourth part provides key applications of nonlinear microscopy to the biomedical area: neurobiology, immunology, tumor biology, developmental biology, dermatology, and cellular metabolism. There are also chapters on nonlinear molecular probes, cellular damage, and nanoprocessing.
Publisher: Oxford University Press
ISBN: 0198036825
Category : Science
Languages : en
Pages : 895
Book Description
The Handbook of Biomedical Nonlinear Optical Microscopy provides comprehensive treatment of the theories, techniques, and biomedical applications of nonlinear optics and microscopy for cell biologists, life scientists, biomedical engineers, and clinicians. The chapters are separated into basic and advanced sections, and provide both textual and graphical illustrations of all key concepts. The more basic sections are aimed at life scientists without advanced training in physics and mathematics, and tutorials are provided for the more challenging sections. The first part of the Handbook introduces the historical context of nonlinear microscopy. The second part presents the nonlinear optical theory of two- and multiphoton excited fluorescence (TPE, MPE) spectroscopy, second and third harmonic generation (SHG, THG) spectroscopy, and coherent anti-Stokes Raman spectroscopy (CARS). The third part introduces modern microscopic and spectroscopic instrumentation and techniques that are based on nonlinear optics. The fourth part provides key applications of nonlinear microscopy to the biomedical area: neurobiology, immunology, tumor biology, developmental biology, dermatology, and cellular metabolism. There are also chapters on nonlinear molecular probes, cellular damage, and nanoprocessing.
Fundamentals Of Optical, Spectroscopic And X-Ray Mineralogy
Author: Sachinath Mitra
Publisher: New Age International
ISBN: 9788122409826
Category : Optical mineralogy
Languages : en
Pages : 356
Book Description
The Primary Scope Of This Text-Book Covers The Transmission As Well As Reflection Optics Of Minerals And The Methods Of Their Studies. To Explain The Optical Behaviour Of Minerals, Some Relevant Concepts In Spectroscopy Have Been Introduced. This Book Fills The Need Of The Students To A Better Understanding Of The Physical Nature Of Minerals Through Studies In Ir-Visible-X-Ray Region.This Book Contains Seven Chapters Titled As: General Optics: Interactions Of Light With Matter, Study In Polarised Light, Optical (Absorption) Sepctroscopic Studies Of Minerals, Reflection Optics, Reflection Spectroscopy, Vibrational Spectroscopy: Infrared And Raman - An Outline, X-Ray Optics. It Also Offers As Appendices The Transmission, Reflection Properties And X-Ray Data Of Minerals.This Is The Only Book That Lucidly Introduces The Principles Of Modern Methods Of Mineral Optics In A Single Volume For The Students Of Graduate And Post-Graduate Levels.
Publisher: New Age International
ISBN: 9788122409826
Category : Optical mineralogy
Languages : en
Pages : 356
Book Description
The Primary Scope Of This Text-Book Covers The Transmission As Well As Reflection Optics Of Minerals And The Methods Of Their Studies. To Explain The Optical Behaviour Of Minerals, Some Relevant Concepts In Spectroscopy Have Been Introduced. This Book Fills The Need Of The Students To A Better Understanding Of The Physical Nature Of Minerals Through Studies In Ir-Visible-X-Ray Region.This Book Contains Seven Chapters Titled As: General Optics: Interactions Of Light With Matter, Study In Polarised Light, Optical (Absorption) Sepctroscopic Studies Of Minerals, Reflection Optics, Reflection Spectroscopy, Vibrational Spectroscopy: Infrared And Raman - An Outline, X-Ray Optics. It Also Offers As Appendices The Transmission, Reflection Properties And X-Ray Data Of Minerals.This Is The Only Book That Lucidly Introduces The Principles Of Modern Methods Of Mineral Optics In A Single Volume For The Students Of Graduate And Post-Graduate Levels.
Biomedical Optical Imaging
Author: James G. Fujimoto
Publisher: Oxford University Press
ISBN: 0199722293
Category : Science
Languages : en
Pages : 435
Book Description
Biomedical optical imaging is a rapidly emerging research area with widespread fundamental research and clinical applications. This book gives an overview of biomedical optical imaging with contributions from leading international research groups who have pioneered many of these techniques and applications. A unique research field spanning the microscopic to the macroscopic, biomedical optical imaging allows both structural and functional imaging. Techniques such as confocal and multiphoton microscopy provide cellular level resolution imaging in biological systems. The integration of this technology with exogenous chromophores can selectively enhance contrast for molecular targets as well as supply functional information on processes such as nerve transduction. Novel techniques integrate microscopy with state-of-the-art optics technology, and these include spectral imaging, two photon fluorescence correlation, nonlinear nanoscopy; optical coherence tomography techniques allow functional, dynamic, nanoscale, and cross-sectional visualization. Moving to the macroscopic scale, spectroscopic assessment and imaging methods such as fluorescence and light scattering can provide diagnostics of tissue pathology including neoplastic changes. Techniques using light diffusion and photon migration are a means to explore processes which occur deep inside biological tissues and organs. The integration of these techniques with exogenous probes enables molecular specific sensitivity.
Publisher: Oxford University Press
ISBN: 0199722293
Category : Science
Languages : en
Pages : 435
Book Description
Biomedical optical imaging is a rapidly emerging research area with widespread fundamental research and clinical applications. This book gives an overview of biomedical optical imaging with contributions from leading international research groups who have pioneered many of these techniques and applications. A unique research field spanning the microscopic to the macroscopic, biomedical optical imaging allows both structural and functional imaging. Techniques such as confocal and multiphoton microscopy provide cellular level resolution imaging in biological systems. The integration of this technology with exogenous chromophores can selectively enhance contrast for molecular targets as well as supply functional information on processes such as nerve transduction. Novel techniques integrate microscopy with state-of-the-art optics technology, and these include spectral imaging, two photon fluorescence correlation, nonlinear nanoscopy; optical coherence tomography techniques allow functional, dynamic, nanoscale, and cross-sectional visualization. Moving to the macroscopic scale, spectroscopic assessment and imaging methods such as fluorescence and light scattering can provide diagnostics of tissue pathology including neoplastic changes. Techniques using light diffusion and photon migration are a means to explore processes which occur deep inside biological tissues and organs. The integration of these techniques with exogenous probes enables molecular specific sensitivity.
Luminescence Spectroscopy of Semiconductors
Author: Ivan Pelant
Publisher: OUP Oxford
ISBN: 019162750X
Category : Science
Languages : en
Pages : 557
Book Description
This book reviews up-to-date ideas of how the luminescence radiation in semiconductors originates and how to analyze it experimentally. The book fills a gap between general textbooks on optical properties of solids and specialized monographs on luminescence. It is unique in its coherent treatment of the phenomenon of luminescence from the very introductory definitions, from light emission in bulk crystalline and amorphous materials to the advanced chapters that deal with semiconductor nano objects, including spectroscopy of individual nanocrystals. The theory of radiative recombination channels in semiconductors is considered on a level of intuitive physical understanding rather than rigorous quantum mechanical treatment. The book is based on teaching and written in the style of a graduate text with plenty of tutorial material, illustrations, and problem sets at chapter ends. It is designed predominantly for students in physics, optics, optoelectronics and materials science.
Publisher: OUP Oxford
ISBN: 019162750X
Category : Science
Languages : en
Pages : 557
Book Description
This book reviews up-to-date ideas of how the luminescence radiation in semiconductors originates and how to analyze it experimentally. The book fills a gap between general textbooks on optical properties of solids and specialized monographs on luminescence. It is unique in its coherent treatment of the phenomenon of luminescence from the very introductory definitions, from light emission in bulk crystalline and amorphous materials to the advanced chapters that deal with semiconductor nano objects, including spectroscopy of individual nanocrystals. The theory of radiative recombination channels in semiconductors is considered on a level of intuitive physical understanding rather than rigorous quantum mechanical treatment. The book is based on teaching and written in the style of a graduate text with plenty of tutorial material, illustrations, and problem sets at chapter ends. It is designed predominantly for students in physics, optics, optoelectronics and materials science.