Optical Effects in Solids

Optical Effects in Solids PDF Author: David B. Tanner
Publisher: Cambridge University Press
ISBN: 1107160146
Category : Science
Languages : en
Pages : 413

Get Book Here

Book Description
An overview of the optical effects in solids, this book addresses the physics of materials and their response to electromagnatic radiation--back cover.

Optical Effects in Solids

Optical Effects in Solids PDF Author: David B. Tanner
Publisher: Cambridge University Press
ISBN: 1107160146
Category : Science
Languages : en
Pages : 413

Get Book Here

Book Description
An overview of the optical effects in solids, this book addresses the physics of materials and their response to electromagnatic radiation--back cover.

Optical Properties of Solids

Optical Properties of Solids PDF Author: Frederick Wooten
Publisher: Academic Press
ISBN: 1483220761
Category : Science
Languages : en
Pages : 273

Get Book Here

Book Description
Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed. The book further tackles current-current correlations; the fluctuation-dissipation theorem; and the effect of surface plasmons on optical properties and photoemission. People involved in the study of the optical properties of solids will find the book invaluable.

Optical Interactions In Solids (2nd Edition)

Optical Interactions In Solids (2nd Edition) PDF Author: Baldassare Di Bartolo
Publisher: World Scientific Publishing Company
ISBN: 9813107839
Category : Science
Languages : en
Pages : 631

Get Book Here

Book Description
Optical Interactions in Solids presents an extensive and unified treatment of the basic principles of the optical properties of solids. It provides a theoretical background to workers in the field of laser physics and absorption and fluorescence spectroscopy of solid state materials. The book is a comprehensive coverage of the subject and is systematically and didactically organized. The level of presentation is such that it will benefit and interest both advanced students and research workers. Group theory — which is useful throughout — is introduced early in the book advocating the scientific community to overcome the reluctance to employ this powerful method. Consistent emphasis is given throughout the book to the relevance of symmetry and to detailed calculations. Different subjects as various as quantum theory of radiation field, thermal vibrations of molecules and crystals and covalent bonding are brought together in a unified treatment which requires knowledge of all these topics and this points to the interpretation of the spectral properties of solids. The content of this work could be used as a two term graduate course in solid state spectroscopy.br>

Optical Spectroscopy of Inorganic Solids

Optical Spectroscopy of Inorganic Solids PDF Author: B. Henderson
Publisher: Oxford University Press
ISBN: 9780199298624
Category : Science
Languages : en
Pages : 678

Get Book Here

Book Description
This text describes the technique of optical spectroscopy applied to problems in condensed matter physics. It relates theoretical understanding to experimental measurement, including discussion of the optical spectroscopy of inorganic insulators, with many illustrative examples. Symmetry arguments are developed from a formal group theoretical basis and are frequently used, and a special effort is made to treat the subject of lattice vibrations and to show how these can affect the spectroscopic properties of solids. The elements of laser theory are developed, and the authors also explore the use of optically detected magnetic resonance techniques for the investigation of semiconducting materials.

Electronic Structure and Magneto-Optical Properties of Solids

Electronic Structure and Magneto-Optical Properties of Solids PDF Author: Victor Antonov
Publisher: Springer Science & Business Media
ISBN: 140201905X
Category : Science
Languages : en
Pages : 538

Get Book Here

Book Description
"The book also presents the MO properties of f band ferromagnetic materials: Tm, Nd, Sm, Ce and La monochalcogenides, some important Yb compounds, SmB6 and Nd3S4, UFe2, U3X4 (X=P, As, Sb, Bi, Se and Te), UCu2P2, UCuP2, UCuAs2, UAsSe, URhA1, UGa2 and UPd3. Within the total group of alloys and compounds, we discuss their MO spectra in relationship to: the spin-orbit coupling strength, the magnitude of the local magnetic moment, the degree of hybridization in the bonding, the half-metallic character, or, equivalently, the Fermi level filling of the bandstructure, the intraband plasma frequency, and the influence of the crystal structure."--BOOK JACKET.

Electrodynamics of Solids

Electrodynamics of Solids PDF Author: Martin Dressel
Publisher: Cambridge University Press
ISBN: 9780521597265
Category : Science
Languages : en
Pages : 490

Get Book Here

Book Description
The authors of this book present a thorough discussion of the optical properties of solids, with a focus on electron states and their response to electrodynamic fields. A review of the fundamental aspects of the propagation of electromagnetic fields, and their interaction with condensed matter, is given. This is followed by a discussion of the optical properties of metals, semiconductors, and collective states of solids such as superconductors. Theoretical concepts, measurement techniques and experimental results are covered in three interrelated sections. Well-established, mature fields are discussed (for example, classical metals and semiconductors) together with modern topics at the focus of current interest. The substantial reference list included will also prove to be a valuable resource for those interested in the electronic properties of solids. The book is intended for use by advanced undergraduate and graduate students, and researchers active in the fields of condensed matter physics, materials science and optical engineering.

Optical Properties of Highly Transparent Solids

Optical Properties of Highly Transparent Solids PDF Author: Bernard Bendow
Publisher: Springer Science & Business Media
ISBN: 1468421786
Category : Science
Languages : en
Pages : 525

Get Book Here

Book Description
Although much work has been performed on measure ments and interpretation of light absorption by opaque or nearly opaque solids, it is surprising to note that until recently relatively little reliable experimental data, and much less theoretical work was available on the nature of transparent solids. This, in spite of the fact that a vast majority of engineering and device ap plications of a solid depend on its optical transparency. Needless to say, all solids are both transparent and opa que depending on the spectral region of consideration. The absorption processes that limit the transparency of a solid are either due to lattice vibrations, as in ionic or partially ionic solids, or due to electronic transi tions, both intrinsic and impurity-induced. For most materials, a sufficiently wide spectral window exists be tween these two limits, where the material is transpar ent. In general, the absorption coefficient, in the long wavelength side of, but sufficiently away from, the fun damental absorption edge, is relatively structureless and has an exponential dependence on frequency. Recent evi dence suggests that in the short wavelength side of the one-phonon region, but beyond two- or three-phonon sin gularities, the absorption coefficient of both polar and nonpolar solids is also relatively structureless and de pends exponentially on frequency.

Optical Processes in Solids

Optical Processes in Solids PDF Author: Yutaka Toyozawa
Publisher: Cambridge University Press
ISBN: 9780521554473
Category : Science
Languages : en
Pages : 432

Get Book Here

Book Description
A unifying element that links the apparently diverse phenomena observed in optical processes is the dielectric dispersion of matter. It describes the response of matter to incoming electromagnetic waves and charged particles, and thus predicts their behavior in the self-induced field of matter, known as polariton and polaron effects. The energies of phonon, exciton and plasmon, quanta of collective motions of charged particles constituting the matter, are also governed by dielectric dispersion. Since the latter is a functional of the former, one can derive useful relations for their self-consistency. Nonlinear response to laser light inclusive of multiphoton processes, and excitation of atomic inner shells by synchrotron radiation, are also described. Within the configuration coordinate model, photo-induced lattice relaxation and chemical reaction are described equally to both ground and relaxed excited states, to provide a novel and global perspective on structural phase transitions and the nature of interatomic bonds. This book was first published in 2003.

Optical Properties of Solids

Optical Properties of Solids PDF Author: Mark Fox
Publisher: Oxford University Press
ISBN: 0199573360
Category : Science
Languages : en
Pages : 415

Get Book Here

Book Description
For final year undergraduates and graduate students in physics, this book offers an up-to-date treatment of the optical properties of solid state materials.

Fundamentals of Condensed Matter Physics

Fundamentals of Condensed Matter Physics PDF Author: Marvin L. Cohen
Publisher: Cambridge University Press
ISBN: 1316571505
Category : Science
Languages : en
Pages : 461

Get Book Here

Book Description
Based on an established course and covering the fundamentals, central areas and contemporary topics of this diverse field, Fundamentals of Condensed Matter Physics is a much-needed textbook for graduate students. The book begins with an introduction to the modern conceptual models of a solid from the points of view of interacting atoms and elementary excitations. It then provides students with a thorough grounding in electronic structure and many-body interactions as a starting point to understand many properties of condensed matter systems - electronic, structural, vibrational, thermal, optical, transport, magnetic and superconducting - and methods to calculate them. Taking readers through the concepts and techniques, the text gives both theoretically and experimentally inclined students the knowledge needed for research and teaching careers in this field. It features 246 illustrations, 9 tables and 100 homework problems, as well as numerous worked examples, for students to test their understanding. Solutions to the problems for instructors are available at www.cambridge.org/cohenlouie.