Author: Ronald L. Rardin
Publisher: Prentice Hall
ISBN: 9780132858113
Category : Mathematical optimization
Languages : en
Pages : 936
Book Description
For first courses in operations research, operations management Optimization in Operations Research, Second Edition covers a broad range of optimization techniques, including linear programming, network flows, integer/combinational optimization, and nonlinear programming. This dynamic text emphasizes the importance of modeling and problem formulation andhow to apply algorithms to real-world problems to arrive at optimal solutions. Use a program that presents a better teaching and learning experience-for you and your students. Prepare students for real-world problems: Students learn how to apply algorithms to problems that get them ready for their field. Use strong pedagogy tools to teach: Key concepts are easy to follow with the text's clear and continually reinforced learning path. Enjoy the text's flexibility: The text features varying amounts of coverage, so that instructors can choose how in-depth they want to go into different topics.
Optimization in Operations Research
Author: Ronald L. Rardin
Publisher: Prentice Hall
ISBN: 9780132858113
Category : Mathematical optimization
Languages : en
Pages : 936
Book Description
For first courses in operations research, operations management Optimization in Operations Research, Second Edition covers a broad range of optimization techniques, including linear programming, network flows, integer/combinational optimization, and nonlinear programming. This dynamic text emphasizes the importance of modeling and problem formulation andhow to apply algorithms to real-world problems to arrive at optimal solutions. Use a program that presents a better teaching and learning experience-for you and your students. Prepare students for real-world problems: Students learn how to apply algorithms to problems that get them ready for their field. Use strong pedagogy tools to teach: Key concepts are easy to follow with the text's clear and continually reinforced learning path. Enjoy the text's flexibility: The text features varying amounts of coverage, so that instructors can choose how in-depth they want to go into different topics.
Publisher: Prentice Hall
ISBN: 9780132858113
Category : Mathematical optimization
Languages : en
Pages : 936
Book Description
For first courses in operations research, operations management Optimization in Operations Research, Second Edition covers a broad range of optimization techniques, including linear programming, network flows, integer/combinational optimization, and nonlinear programming. This dynamic text emphasizes the importance of modeling and problem formulation andhow to apply algorithms to real-world problems to arrive at optimal solutions. Use a program that presents a better teaching and learning experience-for you and your students. Prepare students for real-world problems: Students learn how to apply algorithms to problems that get them ready for their field. Use strong pedagogy tools to teach: Key concepts are easy to follow with the text's clear and continually reinforced learning path. Enjoy the text's flexibility: The text features varying amounts of coverage, so that instructors can choose how in-depth they want to go into different topics.
Deterministic Operations Research
Author: David J. Rader
Publisher: John Wiley & Sons
ISBN: 1118627350
Category : Mathematics
Languages : en
Pages : 631
Book Description
Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations research: modeling real-world problems as linear optimization problem; designing the necessary algorithms to solve these problems; and using mathematical theory to justify algorithmic development. Treating real-world examples as mathematical problems, the author begins with an introduction to operations research and optimization modeling that includes applications form sports scheduling an the airline industry. Subsequent chapters discuss algorithm design for continuous linear optimization problems, covering topics such as convexity. Farkas’ Lemma, and the study of polyhedral before culminating in a discussion of the Simplex Method. The book also addresses linear programming duality theory and its use in algorithm design as well as the Dual Simplex Method. Dantzig-Wolfe decomposition, and a primal-dual interior point algorithm. The final chapters present network optimization and integer programming problems, highlighting various specialized topics including label-correcting algorithms for the shortest path problem, preprocessing and probing in integer programming, lifting of valid inequalities, and branch and cut algorithms. Concepts and approaches are introduced by outlining examples that demonstrate and motivate theoretical concepts. The accessible presentation of advanced ideas makes core aspects easy to understand and encourages readers to understand how to think about the problem, not just what to think. Relevant historical summaries can be found throughout the book, and each chapter is designed as the continuation of the “story” of how to both model and solve optimization problems by using the specific problems-linear and integer programs-as guides. The book’s various examples are accompanied by the appropriate models and calculations, and a related Web site features these models along with MapleTM and MATLAB® content for the discussed calculations. Thoroughly class-tested to ensure a straightforward, hands-on approach, Deterministic Operations Research is an excellent book for operations research of linear optimization courses at the upper-undergraduate and graduate levels. It also serves as an insightful reference for individuals working in the fields of mathematics, engineering, computer science, and operations research who use and design algorithms to solve problem in their everyday work.
Publisher: John Wiley & Sons
ISBN: 1118627350
Category : Mathematics
Languages : en
Pages : 631
Book Description
Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations research: modeling real-world problems as linear optimization problem; designing the necessary algorithms to solve these problems; and using mathematical theory to justify algorithmic development. Treating real-world examples as mathematical problems, the author begins with an introduction to operations research and optimization modeling that includes applications form sports scheduling an the airline industry. Subsequent chapters discuss algorithm design for continuous linear optimization problems, covering topics such as convexity. Farkas’ Lemma, and the study of polyhedral before culminating in a discussion of the Simplex Method. The book also addresses linear programming duality theory and its use in algorithm design as well as the Dual Simplex Method. Dantzig-Wolfe decomposition, and a primal-dual interior point algorithm. The final chapters present network optimization and integer programming problems, highlighting various specialized topics including label-correcting algorithms for the shortest path problem, preprocessing and probing in integer programming, lifting of valid inequalities, and branch and cut algorithms. Concepts and approaches are introduced by outlining examples that demonstrate and motivate theoretical concepts. The accessible presentation of advanced ideas makes core aspects easy to understand and encourages readers to understand how to think about the problem, not just what to think. Relevant historical summaries can be found throughout the book, and each chapter is designed as the continuation of the “story” of how to both model and solve optimization problems by using the specific problems-linear and integer programs-as guides. The book’s various examples are accompanied by the appropriate models and calculations, and a related Web site features these models along with MapleTM and MATLAB® content for the discussed calculations. Thoroughly class-tested to ensure a straightforward, hands-on approach, Deterministic Operations Research is an excellent book for operations research of linear optimization courses at the upper-undergraduate and graduate levels. It also serves as an insightful reference for individuals working in the fields of mathematics, engineering, computer science, and operations research who use and design algorithms to solve problem in their everyday work.
Julia Programming for Operations Research
Author: Changhyun Kwon
Publisher: Changhyun Kwon
ISBN: 1798205475
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
Last Updated: December 2020 Based on Julia v1.3+ and JuMP v0.21+ The main motivation of writing this book was to help the author himself. He is a professor in the field of operations research, and his daily activities involve building models of mathematical optimization, developing algorithms for solving the problems, implementing those algorithms using computer programming languages, experimenting with data, etc. Three languages are involved: human language, mathematical language, and computer language. His team of students need to go over three different languages, which requires "translation" among the three languages. As this book was written to teach his research group how to translate, this book will also be useful for anyone who needs to learn how to translate in a similar situation. The Julia Language is as fast as C, as convenient as MATLAB, and as general as Python with a flexible algebraic modeling language for mathematical optimization problems. With the great support from Julia developers, especially the developers of the JuMP—Julia for Mathematical Programming—package, Julia makes a perfect tool for students and professionals in operations research and related areas such as industrial engineering, management science, transportation engineering, economics, and regional science. For more information, visit: http://www.chkwon.net/julia
Publisher: Changhyun Kwon
ISBN: 1798205475
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
Last Updated: December 2020 Based on Julia v1.3+ and JuMP v0.21+ The main motivation of writing this book was to help the author himself. He is a professor in the field of operations research, and his daily activities involve building models of mathematical optimization, developing algorithms for solving the problems, implementing those algorithms using computer programming languages, experimenting with data, etc. Three languages are involved: human language, mathematical language, and computer language. His team of students need to go over three different languages, which requires "translation" among the three languages. As this book was written to teach his research group how to translate, this book will also be useful for anyone who needs to learn how to translate in a similar situation. The Julia Language is as fast as C, as convenient as MATLAB, and as general as Python with a flexible algebraic modeling language for mathematical optimization problems. With the great support from Julia developers, especially the developers of the JuMP—Julia for Mathematical Programming—package, Julia makes a perfect tool for students and professionals in operations research and related areas such as industrial engineering, management science, transportation engineering, economics, and regional science. For more information, visit: http://www.chkwon.net/julia
Advanced Optimization and Operations Research
Author: Asoke Kumar Bhunia
Publisher: Springer Nature
ISBN: 9813299673
Category : Business & Economics
Languages : en
Pages : 626
Book Description
This textbook provides students with fundamentals and advanced concepts in optimization and operations research. It gives an overview of the historical perspective of operations research and explains its principal characteristics, tools, and applications. The wide range of topics covered includes convex and concave functions, simplex methods, post optimality analysis of linear programming problems, constrained and unconstrained optimization, game theory, queueing theory, and related topics. The text also elaborates on project management, including the importance of critical path analysis, PERT and CPM techniques. This textbook is ideal for any discipline with one or more courses in optimization and operations research; it may also provide a solid reference for researchers and practitioners in operations research.
Publisher: Springer Nature
ISBN: 9813299673
Category : Business & Economics
Languages : en
Pages : 626
Book Description
This textbook provides students with fundamentals and advanced concepts in optimization and operations research. It gives an overview of the historical perspective of operations research and explains its principal characteristics, tools, and applications. The wide range of topics covered includes convex and concave functions, simplex methods, post optimality analysis of linear programming problems, constrained and unconstrained optimization, game theory, queueing theory, and related topics. The text also elaborates on project management, including the importance of critical path analysis, PERT and CPM techniques. This textbook is ideal for any discipline with one or more courses in optimization and operations research; it may also provide a solid reference for researchers and practitioners in operations research.
Operations Research
Author: Katta G. Murty
Publisher: Pearson College Division
ISBN: 9780130565174
Category : Mathematics
Languages : en
Pages : 581
Book Description
Basic text on deterministic optimization methods. Techniques of modeling real world decision making problems, modeling examples that illustrate the use of modeling techniques, and a variety of problem classes are presented. Various types of algorithms with explanations of how each algorithm works and what conclusion can be drawn from its output, and a review of Matrix Algebra and Geometry and a chapter on Heuristic Methods.
Publisher: Pearson College Division
ISBN: 9780130565174
Category : Mathematics
Languages : en
Pages : 581
Book Description
Basic text on deterministic optimization methods. Techniques of modeling real world decision making problems, modeling examples that illustrate the use of modeling techniques, and a variety of problem classes are presented. Various types of algorithms with explanations of how each algorithm works and what conclusion can be drawn from its output, and a review of Matrix Algebra and Geometry and a chapter on Heuristic Methods.
Operations Research and Optimization
Author: Samarjit Kar
Publisher: Springer
ISBN: 9811078149
Category : Mathematics
Languages : en
Pages : 399
Book Description
This book discusses recent developments in the vast domain of optimization. Featuring papers presented at the 1st International Conference on Frontiers in Optimization: Theory and Applications (FOTA 2016), held at the Heritage Institute of Technology, Kolkata, on 24–26 December 2016, it opens new avenues of research in all topics related to optimization, such as linear and nonlinear optimization; combinatorial-, stochastic-, dynamic-, fuzzy-, and uncertain optimization; optimal control theory; as well as multi-objective, evolutionary and convex optimization and their applications in intelligent information and technology, systems science, knowledge management, information and communication, supply chain and inventory control, scheduling, networks, transportation and logistics and finance. The book is a valuable resource for researchers, scientists and engineers from both academia and industry.
Publisher: Springer
ISBN: 9811078149
Category : Mathematics
Languages : en
Pages : 399
Book Description
This book discusses recent developments in the vast domain of optimization. Featuring papers presented at the 1st International Conference on Frontiers in Optimization: Theory and Applications (FOTA 2016), held at the Heritage Institute of Technology, Kolkata, on 24–26 December 2016, it opens new avenues of research in all topics related to optimization, such as linear and nonlinear optimization; combinatorial-, stochastic-, dynamic-, fuzzy-, and uncertain optimization; optimal control theory; as well as multi-objective, evolutionary and convex optimization and their applications in intelligent information and technology, systems science, knowledge management, information and communication, supply chain and inventory control, scheduling, networks, transportation and logistics and finance. The book is a valuable resource for researchers, scientists and engineers from both academia and industry.
Integrated Methods for Optimization
Author: John N. Hooker
Publisher: Springer Science & Business Media
ISBN: 146141900X
Category : Business & Economics
Languages : en
Pages : 655
Book Description
The first edition of Integrated Methods for Optimization was published in January 2007. Because the book covers a rapidly developing field, the time is right for a second edition. The book provides a unified treatment of optimization methods. It brings ideas from mathematical programming (MP), constraint programming (CP), and global optimization (GO)into a single volume. There is no reason these must be learned as separate fields, as they normally are, and there are three reasons they should be studied together. (1) There is much in common among them intellectually, and to a large degree they can be understood as special cases of a single underlying solution technology. (2) A growing literature reports how they can be profitably integrated to formulate and solve a wide range of problems. (3) Several software packages now incorporate techniques from two or more of these fields. The book provides a unique resource for graduate students and practitioners who want a well-rounded background in optimization methods within a single course of study. Engineering students are a particularly large potential audience, because engineering optimization problems often benefit from a combined approach—particularly where design, scheduling, or logistics are involved. The text is also of value to those studying operations research, because their educational programs rarely cover CP, and to those studying computer science and artificial intelligence (AI), because their curric ula typically omit MP and GO. The text is also useful for practitioners in any of these areas who want to learn about another, because it provides a more concise and accessible treatment than other texts. The book can cover so wide a range of material because it focuses on ideas that arerelevant to the methods used in general-purpose optimization and constraint solvers. The book focuses on ideas behind the methods that have proved useful in general-purpose optimization and constraint solvers, as well as integrated solvers of the present and foreseeable future. The second edition updates results in this area and includes several major new topics: Background material in linear, nonlinear, and dynamic programming. Network flow theory, due to its importance in filtering algorithms. A chapter on generalized duality theory that more explicitly develops a unifying primal-dual algorithmic structure for optimization methods. An extensive survey of search methods from both MP and AI, using the primal-dual framework as an organizing principle. Coverage of several additional global constraints used in CP solvers. The book continues to focus on exact as opposed to heuristic methods. It is possible to bring heuristic methods into the unifying scheme described in the book, and the new edition will retain the brief discussion of how this might be done.
Publisher: Springer Science & Business Media
ISBN: 146141900X
Category : Business & Economics
Languages : en
Pages : 655
Book Description
The first edition of Integrated Methods for Optimization was published in January 2007. Because the book covers a rapidly developing field, the time is right for a second edition. The book provides a unified treatment of optimization methods. It brings ideas from mathematical programming (MP), constraint programming (CP), and global optimization (GO)into a single volume. There is no reason these must be learned as separate fields, as they normally are, and there are three reasons they should be studied together. (1) There is much in common among them intellectually, and to a large degree they can be understood as special cases of a single underlying solution technology. (2) A growing literature reports how they can be profitably integrated to formulate and solve a wide range of problems. (3) Several software packages now incorporate techniques from two or more of these fields. The book provides a unique resource for graduate students and practitioners who want a well-rounded background in optimization methods within a single course of study. Engineering students are a particularly large potential audience, because engineering optimization problems often benefit from a combined approach—particularly where design, scheduling, or logistics are involved. The text is also of value to those studying operations research, because their educational programs rarely cover CP, and to those studying computer science and artificial intelligence (AI), because their curric ula typically omit MP and GO. The text is also useful for practitioners in any of these areas who want to learn about another, because it provides a more concise and accessible treatment than other texts. The book can cover so wide a range of material because it focuses on ideas that arerelevant to the methods used in general-purpose optimization and constraint solvers. The book focuses on ideas behind the methods that have proved useful in general-purpose optimization and constraint solvers, as well as integrated solvers of the present and foreseeable future. The second edition updates results in this area and includes several major new topics: Background material in linear, nonlinear, and dynamic programming. Network flow theory, due to its importance in filtering algorithms. A chapter on generalized duality theory that more explicitly develops a unifying primal-dual algorithmic structure for optimization methods. An extensive survey of search methods from both MP and AI, using the primal-dual framework as an organizing principle. Coverage of several additional global constraints used in CP solvers. The book continues to focus on exact as opposed to heuristic methods. It is possible to bring heuristic methods into the unifying scheme described in the book, and the new edition will retain the brief discussion of how this might be done.
Optimization Techniques in Operation Research
Author: C. B Gupta
Publisher: I. K. International Pvt Ltd
ISBN: 8190656686
Category : Mathematical optimization
Languages : en
Pages : 310
Book Description
Special features of the book 1. A very comprehensive and accessible approach in the presentation of the material. 2. A variety of solved examples to illustrate the theoretical results. 3. A large number of unsolved exercises for the students are given for practice at the end of each section. 4. Solution to each unsolved examples are given at the end of each exercise.
Publisher: I. K. International Pvt Ltd
ISBN: 8190656686
Category : Mathematical optimization
Languages : en
Pages : 310
Book Description
Special features of the book 1. A very comprehensive and accessible approach in the presentation of the material. 2. A variety of solved examples to illustrate the theoretical results. 3. A large number of unsolved exercises for the students are given for practice at the end of each section. 4. Solution to each unsolved examples are given at the end of each exercise.
Stochastic Optimization Methods
Author: Kurt Marti
Publisher: Springer
ISBN: 3662462141
Category : Business & Economics
Languages : en
Pages : 389
Book Description
This book examines optimization problems that in practice involve random model parameters. It details the computation of robust optimal solutions, i.e., optimal solutions that are insensitive with respect to random parameter variations, where appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the probabilities and expectations involved, the book also shows how to apply approximative solution techniques. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures and differentiation formulas for probabilities and expectations. In the third edition, this book further develops stochastic optimization methods. In particular, it now shows how to apply stochastic optimization methods to the approximate solution of important concrete problems arising in engineering, economics and operations research.
Publisher: Springer
ISBN: 3662462141
Category : Business & Economics
Languages : en
Pages : 389
Book Description
This book examines optimization problems that in practice involve random model parameters. It details the computation of robust optimal solutions, i.e., optimal solutions that are insensitive with respect to random parameter variations, where appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the probabilities and expectations involved, the book also shows how to apply approximative solution techniques. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures and differentiation formulas for probabilities and expectations. In the third edition, this book further develops stochastic optimization methods. In particular, it now shows how to apply stochastic optimization methods to the approximate solution of important concrete problems arising in engineering, economics and operations research.
Optimization Theory, Decision Making, and Operations Research Applications
Author: Athanasios Migdalas
Publisher: Springer Science & Business Media
ISBN: 1461451345
Category : Mathematics
Languages : en
Pages : 364
Book Description
These proceedings consist of 30 selected research papers based on results presented at the 10th Balkan Conference & 1st International Symposium on Operational Research (BALCOR 2011) held in Thessaloniki, Greece, September 22-24, 2011. BALCOR is an established biennial conference attended by a large number of faculty, researchers and students from the Balkan countries but also from other European and Mediterranean countries as well. Over the past decade, the BALCOR conference has facilitated the exchange of scientific and technical information on the subject of Operations Research and related fields such as Mathematical Programming, Game Theory, Multiple Criteria Decision Analysis, Information Systems, Data Mining and more, in order to promote international scientific cooperation. The carefully selected and refereed papers present important recent developments and modern applications and will serve as excellent reference for students, researchers and practitioners in these disciplines.
Publisher: Springer Science & Business Media
ISBN: 1461451345
Category : Mathematics
Languages : en
Pages : 364
Book Description
These proceedings consist of 30 selected research papers based on results presented at the 10th Balkan Conference & 1st International Symposium on Operational Research (BALCOR 2011) held in Thessaloniki, Greece, September 22-24, 2011. BALCOR is an established biennial conference attended by a large number of faculty, researchers and students from the Balkan countries but also from other European and Mediterranean countries as well. Over the past decade, the BALCOR conference has facilitated the exchange of scientific and technical information on the subject of Operations Research and related fields such as Mathematical Programming, Game Theory, Multiple Criteria Decision Analysis, Information Systems, Data Mining and more, in order to promote international scientific cooperation. The carefully selected and refereed papers present important recent developments and modern applications and will serve as excellent reference for students, researchers and practitioners in these disciplines.