Operations Research and Big Data

Operations Research and Big Data PDF Author: Ana Paula Ferreira Dias Barbosa Póvoa
Publisher: Springer
ISBN: 3319241540
Category : Technology & Engineering
Languages : en
Pages : 255

Get Book Here

Book Description
The development of Operations Research (OR) requires constant improvements, such as the integration of research results with business applications and innovative educational practice. The full deployment and commercial exploitation of goods and services generally need the construction of strong synergies between educational institutions and businesses. The IO2015 -XVII Congress of APDIO aims at strengthening the knowledge triangle in education, research and innovation, in order to maximize the contribution of OR for sustainable growth, the promoting of a knowledge-based economy, and the smart use of finite resources. The IO2015-XVII Congress of APDIO is a privileged meeting point for the promotion and dissemination of OR and related disciplines, through the exchange of ideas among teachers, researchers, students , and professionals with different background, but all sharing a common desire that is the development of OR.

Operations Research and Big Data

Operations Research and Big Data PDF Author: Ana Paula Ferreira Dias Barbosa Póvoa
Publisher: Springer
ISBN: 3319241540
Category : Technology & Engineering
Languages : en
Pages : 255

Get Book Here

Book Description
The development of Operations Research (OR) requires constant improvements, such as the integration of research results with business applications and innovative educational practice. The full deployment and commercial exploitation of goods and services generally need the construction of strong synergies between educational institutions and businesses. The IO2015 -XVII Congress of APDIO aims at strengthening the knowledge triangle in education, research and innovation, in order to maximize the contribution of OR for sustainable growth, the promoting of a knowledge-based economy, and the smart use of finite resources. The IO2015-XVII Congress of APDIO is a privileged meeting point for the promotion and dissemination of OR and related disciplines, through the exchange of ideas among teachers, researchers, students , and professionals with different background, but all sharing a common desire that is the development of OR.

Big Data Analytics in Supply Chain Management

Big Data Analytics in Supply Chain Management PDF Author: Iman Rahimi
Publisher: CRC Press
ISBN: 1000326918
Category : Computers
Languages : en
Pages : 211

Get Book Here

Book Description
In a world of soaring digitization, social media, financial transactions, and production and logistics processes constantly produce massive data. Employing analytical tools to extract insights and foresights from data improves the quality, speed, and reliability of solutions to highly intertwined issues faced in supply chain operations. From procurement in Industry 4.0 to sustainable consumption behavior to curriculum development for data scientists, this book offers a wide array of techniques and theories of Big Data Analytics applied to Supply Chain Management. It offers a comprehensive overview and forms a new synthesis by bringing together seemingly divergent fields of research. Intended for Engineering and Business students, scholars, and professionals, this book is a collection of state-of-the-art research and best practices to spur discussion about and extend the cumulant knowledge of emerging supply chain problems.

Big Data Analytics Using Multiple Criteria Decision-Making Models

Big Data Analytics Using Multiple Criteria Decision-Making Models PDF Author: Ramakrishnan Ramanathan
Publisher: CRC Press
ISBN: 1351648691
Category : Computers
Languages : en
Pages : 435

Get Book Here

Book Description
Multiple Criteria Decision Making (MCDM) is a subfield of Operations Research, dealing with decision making problems. A decision-making problem is characterized by the need to choose one or a few among a number of alternatives. The field of MCDM assumes special importance in this era of Big Data and Business Analytics. In this volume, the focus will be on modelling-based tools for Business Analytics (BA), with exclusive focus on the sub-field of MCDM within the domain of operations research. The book will include an Introduction to Big Data and Business Analytics, and challenges and opportunities for developing MCDM models in the era of Big Data.

Big Data, IoT, and Machine Learning

Big Data, IoT, and Machine Learning PDF Author: Rashmi Agrawal
Publisher: CRC Press
ISBN: 1000098281
Category : Computers
Languages : en
Pages : 339

Get Book Here

Book Description
The idea behind this book is to simplify the journey of aspiring readers and researchers to understand Big Data, IoT and Machine Learning. It also includes various real-time/offline applications and case studies in the fields of engineering, computer science, information security and cloud computing using modern tools. This book consists of two sections: Section I contains the topics related to Applications of Machine Learning, and Section II addresses issues about Big Data, the Cloud and the Internet of Things. This brings all the related technologies into a single source so that undergraduate and postgraduate students, researchers, academicians and people in industry can easily understand them. Features Addresses the complete data science technologies workflow Explores basic and high-level concepts and services as a manual for those in the industry and at the same time can help beginners to understand both basic and advanced aspects of machine learning Covers data processing and security solutions in IoT and Big Data applications Offers adaptive, robust, scalable and reliable applications to develop solutions for day-to-day problems Presents security issues and data migration techniques of NoSQL databases

Big Data Management

Big Data Management PDF Author: Fausto Pedro García Márquez
Publisher: Springer
ISBN: 3319454986
Category : Computers
Languages : en
Pages : 274

Get Book Here

Book Description
This book focuses on the analytic principles of business practice and big data. Specifically, it provides an interface between the main disciplines of engineering/technology and the organizational and administrative aspects of management, serving as a complement to books in other disciplines such as economics, finance, marketing and risk analysis. The contributors present their areas of expertise, together with essential case studies that illustrate the successful application of engineering management theories in real-life examples.

Big Data Optimization: Recent Developments and Challenges

Big Data Optimization: Recent Developments and Challenges PDF Author: Ali Emrouznejad
Publisher: Springer
ISBN: 3319302655
Category : Technology & Engineering
Languages : en
Pages : 492

Get Book Here

Book Description
The main objective of this book is to provide the necessary background to work with big data by introducing some novel optimization algorithms and codes capable of working in the big data setting as well as introducing some applications in big data optimization for both academics and practitioners interested, and to benefit society, industry, academia, and government. Presenting applications in a variety of industries, this book will be useful for the researchers aiming to analyses large scale data. Several optimization algorithms for big data including convergent parallel algorithms, limited memory bundle algorithm, diagonal bundle method, convergent parallel algorithms, network analytics, and many more have been explored in this book.

Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics

Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics PDF Author: R. Sujatha
Publisher: CRC Press
ISBN: 1000454533
Category : Computers
Languages : en
Pages : 217

Get Book Here

Book Description
Data science revolves around two giants: Big Data analytics and Deep Learning. It is becoming challenging to handle and retrieve useful information due to how fast data is expanding. This book presents the technologies and tools to simplify and streamline the formation of Big Data as well as Deep Learning systems. This book discusses how Big Data and Deep Learning hold the potential to significantly increase data understanding and decision-making. It also covers numerous applications in healthcare, education, communication, media, and entertainment. Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics offers innovative platforms for integrating Big Data and Deep Learning and presents issues related to adequate data storage, semantic indexing, data tagging, and fast information retrieval. FEATURES Provides insight into the skill set that leverages one’s strength to act as a good data analyst Discusses how Big Data and Deep Learning hold the potential to significantly increase data understanding and help in decision-making Covers numerous potential applications in healthcare, education, communication, media, and entertainment Offers innovative platforms for integrating Big Data and Deep Learning Presents issues related to adequate data storage, semantic indexing, data tagging, and fast information retrieval from Big Data This book is aimed at industry professionals, academics, research scholars, system modelers, and simulation experts.

Neural Networks: Tricks of the Trade

Neural Networks: Tricks of the Trade PDF Author: Grégoire Montavon
Publisher: Springer
ISBN: 3642352898
Category : Computers
Languages : en
Pages : 753

Get Book Here

Book Description
The twenty last years have been marked by an increase in available data and computing power. In parallel to this trend, the focus of neural network research and the practice of training neural networks has undergone a number of important changes, for example, use of deep learning machines. The second edition of the book augments the first edition with more tricks, which have resulted from 14 years of theory and experimentation by some of the world's most prominent neural network researchers. These tricks can make a substantial difference (in terms of speed, ease of implementation, and accuracy) when it comes to putting algorithms to work on real problems.

Sustainability, Big Data, and Corporate Social Responsibility

Sustainability, Big Data, and Corporate Social Responsibility PDF Author: Mohammed El Amine Abdelli
Publisher: CRC Press
ISBN: 1000572412
Category : Business & Economics
Languages : en
Pages : 279

Get Book Here

Book Description
This book aims to provide theoretical and empirical frameworks and highlights the challenges and solutions with using Big Data for Corporate Social Responsibility (CSR) and Sustainability in the field of digital transformation and tourism. Sustainability, Big Data, and Corporate Social Responsibility: Evidence from the Tourism Industry offers a theoretical and empirical framework in the field of digital transformation and applies it to the tourism sector. It discusses Big Data used with CSR and sustainability for the improvement of innovation and highlights the challenges and prospects. It presents a modern insight and approach for use by decision-makers as an application to solve various problems and explores how data collection can shed light on consumer behavior making it possible to account for existing situations and plan for the future. This book is intended to provide a modern insight for researcher, students, professionals, and decision-makers on the application of Big Data to improve CSR and sustainability in the tourism sector.

Data-Enabled Analytics

Data-Enabled Analytics PDF Author: Joe Zhu
Publisher: Springer Nature
ISBN: 3030751627
Category : Business & Economics
Languages : en
Pages : 370

Get Book Here

Book Description
This book explores the novel uses and potentials of Data Envelopment Analysis (DEA) under big data. These areas are of widespread interest to researchers and practitioners alike. Considering the vast literature on DEA, one could say that DEA has been and continues to be, a widely used technique both in performance and productivity measurement, having covered a plethora of challenges and debates within the modelling framework.