Operation of the Superconducting Linac at the Spallation Neutron Source

Operation of the Superconducting Linac at the Spallation Neutron Source PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
At the Spallation Neutron Source, the first fully operational pulsed superconducting linac has been active for about two years. During this period, stable beam operation at 4.4 K has been achieved with beam for repetition rates up to 15 Hz and 30 Hz at 2.1 K. At the lower temperature 60 Hz RF pulses have been also used. Full beam energy has been achieved at 15 Hz and short beam pulses. Most of the time the superconducting cavities are operated at somewhat lower gradients to improve reliability. A large amount of data has been collected on the pulsed behavior of cavities and SRF modules at various repetition rates and at various temperatures. This experience will be of great value in determining future optimizations of SNS as well in guiding in the design and operation of future pulsed superconducting linacs. This paper describes the details of the cryogenic system and RF properties of the SNS superconducting linac.

Operation of the Superconducting Linac at the Spallation Neutron Source

Operation of the Superconducting Linac at the Spallation Neutron Source PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
At the Spallation Neutron Source, the first fully operational pulsed superconducting linac has been active for about two years. During this period, stable beam operation at 4.4 K has been achieved with beam for repetition rates up to 15 Hz and 30 Hz at 2.1 K. At the lower temperature 60 Hz RF pulses have been also used. Full beam energy has been achieved at 15 Hz and short beam pulses. Most of the time the superconducting cavities are operated at somewhat lower gradients to improve reliability. A large amount of data has been collected on the pulsed behavior of cavities and SRF modules at various repetition rates and at various temperatures. This experience will be of great value in determining future optimizations of SNS as well in guiding in the design and operation of future pulsed superconducting linacs. This paper describes the details of the cryogenic system and RF properties of the SNS superconducting linac.

Construction and Operation of the Spallation Neutron Source (TN, NY, IL, NM)

Construction and Operation of the Spallation Neutron Source (TN, NY, IL, NM) PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 726

Get Book Here

Book Description


SUPERCONDUCTING LINAC FOR THE SPALLATION NEUTRON SOURCE.

SUPERCONDUCTING LINAC FOR THE SPALLATION NEUTRON SOURCE. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Get Book Here

Book Description
The Spallation Neutron Source (SNS) linac is comprised of both normal and superconducting rf (SRF) accelerating structures. The SRF linac accelerates the beam from 186 to 1250 MeV through 117 elliptical, multi-cell niobium cavities. This paper describes the SRF linac architecture, physics design considerations, cavity commissioning, and the expected beam dynamics performance.

Superconducting Prototype Cavities for the Spallation Neutron Source (SNS) Project

Superconducting Prototype Cavities for the Spallation Neutron Source (SNS) Project PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Spallation Neutron Source project includes a superconducting linac section in the energy range from 186 MeV to 1000 MeV operating at a frequency of 805 MHz at 2.1 K. For this energy range two types of cavities are needed with geometrical Beta-values of Beta=0.61 and Beta=0.81. An aggressive cavity prototyping program is being pursued at JLab, which calls for fabricating and testing of four Beta=0.61 cavities and two Beta=0.81 cavities. Both types consist of six cells made from high purity niobium and feature one HOM coupler of the TESLA type on each beam pipe and a port for a high power coaxial input coupler. Three of the four Beta=0.61 cavities will be used for a cryomodule test in early 2002. At this time, four medium beta cavities and one high beta cavity have been completed and tested at JLab. In addition, the three medium beta cavities for the prototype cryomodule have been equipped with the integrated Ti-Helium vessel, successfully retested and will be assembled into a cavity string. Results from the cryo-module test should be available by the time of the conference. The tests on the Beta=0.61 cavity and the Beta=0.81 cavity exceeded the design values for gradient and Q - value: E{sub acc} =10.1 MV/m and Q = 5 x 109 at 2.1K for Beta=0.61 and E{sub acc} = 12.3 MV/m and Q=5 x 109 at 2.1K for Beta = 0.81. The medium beta cavities reached gradients between E{sub acc} = 15 MV/m and 21 MV/m. This paper will describe the test results obtained with the various cavities, some aspects of the HOM damping at cryogenic temperatures, results from microphonics and Lorentz force detuning tests and the cavity string assembly at the time of this workshop.

Performance Overview of the Production Superconducting RF Cavities for the Spallation Neutron Source Linac

Performance Overview of the Production Superconducting RF Cavities for the Spallation Neutron Source Linac PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
As part of its efforts for the SNS construction project, Jefferson Lab has produced 23 cryomodules for the superconducting linac. These modules contained 81 industrially produced multicell Nb accelerating cavities. Each of these cavities was individually tested before assembly into a cryomodule to verify that they achieved the required performance. This ensemble of cavities represents the 3rd largest set of production superconducting cavities fabricated and tested to date. The timely qualification testing of such a collection of cavities offers both challenges and opportunities. Their performance can be characterized by achieved gradient at the required Qo, achieved peak surface field, onset of field emission, and observations of multipacting. Possible correlations between cavity performance and process parameters, only really meaningful in the framework of a large scale production effort, will also be presented. In light of the potential adoption of these cavities for projects such as the Rare Isotope Accelerator or Fermilab Proton Driver, such an analysis is crucial to their success.

Design Considerations on a Proton Superconducting Linac

Design Considerations on a Proton Superconducting Linac PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 30

Get Book Here

Book Description
The authors analyze the longitudinal motion of a single proton in a superconducting linear accelerator. They derive the linearized equations of motion, and develop a matrix formalism to represent the progress of motion. The goal is to provide a tool which can be easily included in a computer code for the design of superconducting proton linacs. In particular they determine the stability conditions, and the amount of motion mismatch resulting from the presence of drift insertions, and from the rate of acceleration. Space-charge effects have not been included in the analysis. They complement the analysis with considerations of the rf and cryogenic power requirements, of the pulsed mode of operation, and of the beam transverse confinement. They conclude with an example of a Spallation Neutron Source.

Superconducting Linac for the SNS.

Superconducting Linac for the SNS. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Spallation Neutron Source (SNS) linac is comprised of both normal and superconducting rf (SRF) accelerating structures. The SRF linac is accelerates the beam from 186 to 1250 MeV through 117 elliptical, multi-cell niobium cavities. This paper describes the SRF linac architecture, physics design considerations, cavity commissioning, and the expected beam dynamics performance.

Design Considerations for High-current Superconducting Ion Linacs

Design Considerations for High-current Superconducting Ion Linacs PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Get Book Here

Book Description
Superconducting linacs may be a viable option for high-current applications such as fusion materials irradiation testing, spallation neutron source, transmutation of radioactive waste, tritium production, and energy production. These linacs must run reliably for many years and allow easy routine maintenance. Superconducting cavities operate efficiently with high cw gradients, properties which help to reduce operating and capital costs, respectively. However, cost-effectiveness is not the sole consideration in these applications. For example, beam impingement must be essentially eliminated to prevent unsafe radioactivation of the accelerating structures, and thus large apertures are needed through which to pass the beam. Because of their high efficiency, superconducting cavities can be designed with very large bore apertures, thereby reducing the effect of beam impingement. Key aspects of high-current cw superconducting linac designs are explored in this context.

A PROCEDURE TO SET PHASE AND AMPLITUDE OF THE RF IN THE SNS LINAC'S SUPERCONDUCTING CAVITIES.

A PROCEDURE TO SET PHASE AND AMPLITUDE OF THE RF IN THE SNS LINAC'S SUPERCONDUCTING CAVITIES. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This paper describes a procedure to set the phase and amplitude of the RF fields in the Spallation Neutron Source (SNS) linac's superconducting cavities. The linac uses superconducting cavities to accelerate the H[sup -] ion beam from the normal conducting linac at 185 MeV to a final energy of[approx]1 GeV. There are two types of cavities in the linac, 33 cavities with a geometric beta of 0.61 and 48 cavities with a geometric beta of 0.81. The correct phase setting of any single superconducting cavity depends on the RF phase and amplitude of all the preceding superconducting cavities. For the beam to be properly accelerated it must arrive at each cavity with a relative phase ([phi][sub s]), called the synchronous phase, of about -20 degrees. That is, it must arrive early with respect to the phase at which it would gain the maximum energy by 20 degrees. This timing provides the longitudinal focusing. Beam particles arriving slightly later gain more energy and move faster relative to the synchronous beam particle. The problem is to set the phase and amplitude of each cavity in the linac so that the synchronous particle arrives at each cavity with the correct phase. The amplitude of each superconducting cavity will be adjusted as high as possible constrained only by the available RF power and the breakdown field of the cavity.

Conceptual Design for Replacement of the DTL and CCL with Superconducting RF Cavities in the Spallation Neutron Source Linac

Conceptual Design for Replacement of the DTL and CCL with Superconducting RF Cavities in the Spallation Neutron Source Linac PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Spallation Neutron Source Linac utilizes normal conducting RF cavities in the low energy section from 2.5 MeV to 186 MeV. Six Drift Tube Linac (DTL) structures accelerate the beam to 87 MeV, and four Coupled Cavity Linac (CCL) structures provide further acceleration to 186 MeV. The remainder of the Linac is comprised of 81 superconducting cavities packaged in 23 cryomodules to provide final beam energy of approximately 1 GeV. The superconducting Linac has proven to be substantially more reliable than the normal conducting Linac despite the greater number of stations and the complexity associated with the cryogenic plant and distribution. A conceptual design has been initiated on a replacement of the DTL and CCL with superconducting RF cavities. The motivation, constraints, and conceptual design are presented.