Author: Barbara Chapman
Publisher: MIT Press
ISBN: 0262533022
Category : Computers
Languages : en
Pages : 378
Book Description
A comprehensive overview of OpenMP, the standard application programming interface for shared memory parallel computing—a reference for students and professionals. "I hope that readers will learn to use the full expressibility and power of OpenMP. This book should provide an excellent introduction to beginners, and the performance section should help those with some experience who want to push OpenMP to its limits." —from the foreword by David J. Kuck, Intel Fellow, Software and Solutions Group, and Director, Parallel and Distributed Solutions, Intel Corporation OpenMP, a portable programming interface for shared memory parallel computers, was adopted as an informal standard in 1997 by computer scientists who wanted a unified model on which to base programs for shared memory systems. OpenMP is now used by many software developers; it offers significant advantages over both hand-threading and MPI. Using OpenMP offers a comprehensive introduction to parallel programming concepts and a detailed overview of OpenMP. Using OpenMP discusses hardware developments, describes where OpenMP is applicable, and compares OpenMP to other programming interfaces for shared and distributed memory parallel architectures. It introduces the individual features of OpenMP, provides many source code examples that demonstrate the use and functionality of the language constructs, and offers tips on writing an efficient OpenMP program. It describes how to use OpenMP in full-scale applications to achieve high performance on large-scale architectures, discussing several case studies in detail, and offers in-depth troubleshooting advice. It explains how OpenMP is translated into explicitly multithreaded code, providing a valuable behind-the-scenes account of OpenMP program performance. Finally, Using OpenMP considers trends likely to influence OpenMP development, offering a glimpse of the possibilities of a future OpenMP 3.0 from the vantage point of the current OpenMP 2.5. With multicore computer use increasing, the need for a comprehensive introduction and overview of the standard interface is clear. Using OpenMP provides an essential reference not only for students at both undergraduate and graduate levels but also for professionals who intend to parallelize existing codes or develop new parallel programs for shared memory computer architectures.
Using OpenMP
Author: Barbara Chapman
Publisher: MIT Press
ISBN: 0262533022
Category : Computers
Languages : en
Pages : 378
Book Description
A comprehensive overview of OpenMP, the standard application programming interface for shared memory parallel computing—a reference for students and professionals. "I hope that readers will learn to use the full expressibility and power of OpenMP. This book should provide an excellent introduction to beginners, and the performance section should help those with some experience who want to push OpenMP to its limits." —from the foreword by David J. Kuck, Intel Fellow, Software and Solutions Group, and Director, Parallel and Distributed Solutions, Intel Corporation OpenMP, a portable programming interface for shared memory parallel computers, was adopted as an informal standard in 1997 by computer scientists who wanted a unified model on which to base programs for shared memory systems. OpenMP is now used by many software developers; it offers significant advantages over both hand-threading and MPI. Using OpenMP offers a comprehensive introduction to parallel programming concepts and a detailed overview of OpenMP. Using OpenMP discusses hardware developments, describes where OpenMP is applicable, and compares OpenMP to other programming interfaces for shared and distributed memory parallel architectures. It introduces the individual features of OpenMP, provides many source code examples that demonstrate the use and functionality of the language constructs, and offers tips on writing an efficient OpenMP program. It describes how to use OpenMP in full-scale applications to achieve high performance on large-scale architectures, discussing several case studies in detail, and offers in-depth troubleshooting advice. It explains how OpenMP is translated into explicitly multithreaded code, providing a valuable behind-the-scenes account of OpenMP program performance. Finally, Using OpenMP considers trends likely to influence OpenMP development, offering a glimpse of the possibilities of a future OpenMP 3.0 from the vantage point of the current OpenMP 2.5. With multicore computer use increasing, the need for a comprehensive introduction and overview of the standard interface is clear. Using OpenMP provides an essential reference not only for students at both undergraduate and graduate levels but also for professionals who intend to parallelize existing codes or develop new parallel programs for shared memory computer architectures.
Publisher: MIT Press
ISBN: 0262533022
Category : Computers
Languages : en
Pages : 378
Book Description
A comprehensive overview of OpenMP, the standard application programming interface for shared memory parallel computing—a reference for students and professionals. "I hope that readers will learn to use the full expressibility and power of OpenMP. This book should provide an excellent introduction to beginners, and the performance section should help those with some experience who want to push OpenMP to its limits." —from the foreword by David J. Kuck, Intel Fellow, Software and Solutions Group, and Director, Parallel and Distributed Solutions, Intel Corporation OpenMP, a portable programming interface for shared memory parallel computers, was adopted as an informal standard in 1997 by computer scientists who wanted a unified model on which to base programs for shared memory systems. OpenMP is now used by many software developers; it offers significant advantages over both hand-threading and MPI. Using OpenMP offers a comprehensive introduction to parallel programming concepts and a detailed overview of OpenMP. Using OpenMP discusses hardware developments, describes where OpenMP is applicable, and compares OpenMP to other programming interfaces for shared and distributed memory parallel architectures. It introduces the individual features of OpenMP, provides many source code examples that demonstrate the use and functionality of the language constructs, and offers tips on writing an efficient OpenMP program. It describes how to use OpenMP in full-scale applications to achieve high performance on large-scale architectures, discussing several case studies in detail, and offers in-depth troubleshooting advice. It explains how OpenMP is translated into explicitly multithreaded code, providing a valuable behind-the-scenes account of OpenMP program performance. Finally, Using OpenMP considers trends likely to influence OpenMP development, offering a glimpse of the possibilities of a future OpenMP 3.0 from the vantage point of the current OpenMP 2.5. With multicore computer use increasing, the need for a comprehensive introduction and overview of the standard interface is clear. Using OpenMP provides an essential reference not only for students at both undergraduate and graduate levels but also for professionals who intend to parallelize existing codes or develop new parallel programs for shared memory computer architectures.
Parallel Programming in OpenMP
Author: Rohit Chandra
Publisher: Morgan Kaufmann
ISBN: 1558606718
Category : Computers
Languages : en
Pages : 250
Book Description
Software -- Programming Techniques.
Publisher: Morgan Kaufmann
ISBN: 1558606718
Category : Computers
Languages : en
Pages : 250
Book Description
Software -- Programming Techniques.
Introduction to Parallel Programming
Author: Subodh Kumar
Publisher: Cambridge University Press
ISBN: 1009276301
Category : Computers
Languages : en
Pages :
Book Description
In modern computer science, there exists no truly sequential computing system; and most advanced programming is parallel programming. This is particularly evident in modern application domains like scientific computation, data science, machine intelligence, etc. This lucid introductory textbook will be invaluable to students of computer science and technology, acting as a self-contained primer to parallel programming. It takes the reader from introduction to expertise, addressing a broad gamut of issues. It covers different parallel programming styles, describes parallel architecture, includes parallel programming frameworks and techniques, presents algorithmic and analysis techniques and discusses parallel design and performance issues. With its broad coverage, the book can be useful in a wide range of courses; and can also prove useful as a ready reckoner for professionals in the field.
Publisher: Cambridge University Press
ISBN: 1009276301
Category : Computers
Languages : en
Pages :
Book Description
In modern computer science, there exists no truly sequential computing system; and most advanced programming is parallel programming. This is particularly evident in modern application domains like scientific computation, data science, machine intelligence, etc. This lucid introductory textbook will be invaluable to students of computer science and technology, acting as a self-contained primer to parallel programming. It takes the reader from introduction to expertise, addressing a broad gamut of issues. It covers different parallel programming styles, describes parallel architecture, includes parallel programming frameworks and techniques, presents algorithmic and analysis techniques and discusses parallel design and performance issues. With its broad coverage, the book can be useful in a wide range of courses; and can also prove useful as a ready reckoner for professionals in the field.
Using OpenMP-The Next Step
Author: Ruud Van Der Pas
Publisher: MIT Press
ISBN: 0262534789
Category : Computers
Languages : en
Pages : 392
Book Description
A guide to the most recent, advanced features of the widely used OpenMP parallel programming model, with coverage of major features in OpenMP 4.5. This book offers an up-to-date, practical tutorial on advanced features in the widely used OpenMP parallel programming model. Building on the previous volume, Using OpenMP: Portable Shared Memory Parallel Programming (MIT Press), this book goes beyond the fundamentals to focus on what has been changed and added to OpenMP since the 2.5 specifications. It emphasizes four major and advanced areas: thread affinity (keeping threads close to their data), accelerators (special hardware to speed up certain operations), tasking (to parallelize algorithms with a less regular execution flow), and SIMD (hardware assisted operations on vectors). As in the earlier volume, the focus is on practical usage, with major new features primarily introduced by example. Examples are restricted to C and C++, but are straightforward enough to be understood by Fortran programmers. After a brief recap of OpenMP 2.5, the book reviews enhancements introduced since 2.5. It then discusses in detail tasking, a major functionality enhancement; Non-Uniform Memory Access (NUMA) architectures, supported by OpenMP; SIMD, or Single Instruction Multiple Data; heterogeneous systems, a new parallel programming model to offload computation to accelerators; and the expected further development of OpenMP.
Publisher: MIT Press
ISBN: 0262534789
Category : Computers
Languages : en
Pages : 392
Book Description
A guide to the most recent, advanced features of the widely used OpenMP parallel programming model, with coverage of major features in OpenMP 4.5. This book offers an up-to-date, practical tutorial on advanced features in the widely used OpenMP parallel programming model. Building on the previous volume, Using OpenMP: Portable Shared Memory Parallel Programming (MIT Press), this book goes beyond the fundamentals to focus on what has been changed and added to OpenMP since the 2.5 specifications. It emphasizes four major and advanced areas: thread affinity (keeping threads close to their data), accelerators (special hardware to speed up certain operations), tasking (to parallelize algorithms with a less regular execution flow), and SIMD (hardware assisted operations on vectors). As in the earlier volume, the focus is on practical usage, with major new features primarily introduced by example. Examples are restricted to C and C++, but are straightforward enough to be understood by Fortran programmers. After a brief recap of OpenMP 2.5, the book reviews enhancements introduced since 2.5. It then discusses in detail tasking, a major functionality enhancement; Non-Uniform Memory Access (NUMA) architectures, supported by OpenMP; SIMD, or Single Instruction Multiple Data; heterogeneous systems, a new parallel programming model to offload computation to accelerators; and the expected further development of OpenMP.
Using MPI
Author: William Gropp
Publisher: MIT Press
ISBN: 9780262571326
Category : Computers
Languages : en
Pages : 410
Book Description
The authors introduce the core function of the Message Printing Interface (MPI). This edition adds material on the C++ and Fortran 90 binding for MPI.
Publisher: MIT Press
ISBN: 9780262571326
Category : Computers
Languages : en
Pages : 410
Book Description
The authors introduce the core function of the Message Printing Interface (MPI). This edition adds material on the C++ and Fortran 90 binding for MPI.
Shared Memory Application Programming
Author: Victor Alessandrini
Publisher: Morgan Kaufmann
ISBN: 0128038209
Category : Computers
Languages : en
Pages : 557
Book Description
Shared Memory Application Programming presents the key concepts and applications of parallel programming, in an accessible and engaging style applicable to developers across many domains. Multithreaded programming is today a core technology, at the basis of all software development projects in any branch of applied computer science. This book guides readers to develop insights about threaded programming and introduces two popular platforms for multicore development: OpenMP and Intel Threading Building Blocks (TBB). Author Victor Alessandrini leverages his rich experience to explain each platform's design strategies, analyzing the focus and strengths underlying their often complementary capabilities, as well as their interoperability. The book is divided into two parts: the first develops the essential concepts of thread management and synchronization, discussing the way they are implemented in native multithreading libraries (Windows threads, Pthreads) as well as in the modern C++11 threads standard. The second provides an in-depth discussion of TBB and OpenMP including the latest features in OpenMP 4.0 extensions to ensure readers' skills are fully up to date. Focus progressively shifts from traditional thread parallelism to modern task parallelism deployed by modern programming environments. Several chapter include examples drawn from a variety of disciplines, including molecular dynamics and image processing, with full source code and a software library incorporating a number of utilities that readers can adapt into their own projects. - Designed to introduce threading and multicore programming to teach modern coding strategies for developers in applied computing - Leverages author Victor Alessandrini's rich experience to explain each platform's design strategies, analyzing the focus and strengths underlying their often complementary capabilities, as well as their interoperability - Includes complete, up-to-date discussions of OpenMP 4.0 and TBB - Based on the author's training sessions, including information on source code and software libraries which can be repurposed
Publisher: Morgan Kaufmann
ISBN: 0128038209
Category : Computers
Languages : en
Pages : 557
Book Description
Shared Memory Application Programming presents the key concepts and applications of parallel programming, in an accessible and engaging style applicable to developers across many domains. Multithreaded programming is today a core technology, at the basis of all software development projects in any branch of applied computer science. This book guides readers to develop insights about threaded programming and introduces two popular platforms for multicore development: OpenMP and Intel Threading Building Blocks (TBB). Author Victor Alessandrini leverages his rich experience to explain each platform's design strategies, analyzing the focus and strengths underlying their often complementary capabilities, as well as their interoperability. The book is divided into two parts: the first develops the essential concepts of thread management and synchronization, discussing the way they are implemented in native multithreading libraries (Windows threads, Pthreads) as well as in the modern C++11 threads standard. The second provides an in-depth discussion of TBB and OpenMP including the latest features in OpenMP 4.0 extensions to ensure readers' skills are fully up to date. Focus progressively shifts from traditional thread parallelism to modern task parallelism deployed by modern programming environments. Several chapter include examples drawn from a variety of disciplines, including molecular dynamics and image processing, with full source code and a software library incorporating a number of utilities that readers can adapt into their own projects. - Designed to introduce threading and multicore programming to teach modern coding strategies for developers in applied computing - Leverages author Victor Alessandrini's rich experience to explain each platform's design strategies, analyzing the focus and strengths underlying their often complementary capabilities, as well as their interoperability - Includes complete, up-to-date discussions of OpenMP 4.0 and TBB - Based on the author's training sessions, including information on source code and software libraries which can be repurposed
OpenMP Shared Memory Parallel Programming
Author: Michael J. Voss
Publisher: Springer
ISBN: 3540450092
Category : Computers
Languages : en
Pages : 280
Book Description
The refereed proceedings of the International Workshop on OpenMP Applications and Tools, WOMPAT 2003, held in Toronto, Canada in June 2003. The 20 revised full papers presented were carefully reviewed and selected for inclusion in the book. The papers are organized in sections on tools and tool technology, OpenMP implementations, OpenMP experience, and OpenMP on clusters.
Publisher: Springer
ISBN: 3540450092
Category : Computers
Languages : en
Pages : 280
Book Description
The refereed proceedings of the International Workshop on OpenMP Applications and Tools, WOMPAT 2003, held in Toronto, Canada in June 2003. The 20 revised full papers presented were carefully reviewed and selected for inclusion in the book. The papers are organized in sections on tools and tool technology, OpenMP implementations, OpenMP experience, and OpenMP on clusters.
Parallel Programming Using C++
Author: Gregory V. Wilson
Publisher: MIT Press
ISBN: 9780262731188
Category : Computers
Languages : en
Pages : 796
Book Description
Foreword by Bjarne Stroustrup Software is generally acknowledged to be the single greatest obstacle preventing mainstream adoption of massively-parallel computing. While sequential applications are routinely ported to platforms ranging from PCs to mainframes, most parallel programs only ever run on one type of machine. One reason for this is that most parallel programming systems have failed to insulate their users from the architectures of the machines on which they have run. Those that have been platform-independent have usually also had poor performance. Many researchers now believe that object-oriented languages may offer a solution. By hiding the architecture-specific constructs required for high performance inside platform-independent abstractions, parallel object-oriented programming systems may be able to combine the speed of massively-parallel computing with the comfort of sequential programming. Parallel Programming Using C++ describes fifteen parallel programming systems based on C++, the most popular object-oriented language of today. These systems cover the whole spectrum of parallel programming paradigms, from data parallelism through dataflow and distributed shared memory to message-passing control parallelism. For the parallel programming community, a common parallel application is discussed in each chapter, as part of the description of the system itself. By comparing the implementations of the polygon overlay problem in each system, the reader can get a better sense of their expressiveness and functionality for a common problem. For the systems community, the chapters contain a discussion of the implementation of the various compilers and runtime systems. In addition to discussing the performance of polygon overlay, several of the contributors also discuss the performance of other, more substantial, applications. For the research community, the contributors discuss the motivations for and philosophy of their systems. As well, many of the chapters include critiques that complete the research arc by pointing out possible future research directions. Finally, for the object-oriented community, there are many examples of how encapsulation, inheritance, and polymorphism can be used to control the complexity of developing, debugging, and tuning parallel software.
Publisher: MIT Press
ISBN: 9780262731188
Category : Computers
Languages : en
Pages : 796
Book Description
Foreword by Bjarne Stroustrup Software is generally acknowledged to be the single greatest obstacle preventing mainstream adoption of massively-parallel computing. While sequential applications are routinely ported to platforms ranging from PCs to mainframes, most parallel programs only ever run on one type of machine. One reason for this is that most parallel programming systems have failed to insulate their users from the architectures of the machines on which they have run. Those that have been platform-independent have usually also had poor performance. Many researchers now believe that object-oriented languages may offer a solution. By hiding the architecture-specific constructs required for high performance inside platform-independent abstractions, parallel object-oriented programming systems may be able to combine the speed of massively-parallel computing with the comfort of sequential programming. Parallel Programming Using C++ describes fifteen parallel programming systems based on C++, the most popular object-oriented language of today. These systems cover the whole spectrum of parallel programming paradigms, from data parallelism through dataflow and distributed shared memory to message-passing control parallelism. For the parallel programming community, a common parallel application is discussed in each chapter, as part of the description of the system itself. By comparing the implementations of the polygon overlay problem in each system, the reader can get a better sense of their expressiveness and functionality for a common problem. For the systems community, the chapters contain a discussion of the implementation of the various compilers and runtime systems. In addition to discussing the performance of polygon overlay, several of the contributors also discuss the performance of other, more substantial, applications. For the research community, the contributors discuss the motivations for and philosophy of their systems. As well, many of the chapters include critiques that complete the research arc by pointing out possible future research directions. Finally, for the object-oriented community, there are many examples of how encapsulation, inheritance, and polymorphism can be used to control the complexity of developing, debugging, and tuning parallel software.
OpenMP Shared Memory Parallel Programming
Author: Rudolf Eigenmann
Publisher: Springer
ISBN: 3540445870
Category : Computers
Languages : en
Pages : 194
Book Description
This book contains the presentations given at the Workshop on OpenMP App- cations and Tools, WOMPAT 2001. The workshop was held on July 30 and 31, 2001 at Purdue University, West Lafayette, Indiana, USA. It brought together designers, users, and researchers of the OpenMP application programming int- face. OpenMP has emerged as the standard for shared memory parallel progr- ming. For the rst time, it is possible to write parallel programs that are portable across the majority of shared memory parallel computers. WOMPAT 2001 s- ved as a forum for all those interested in OpenMP and allowed them to meet, share ideas and experiences, and discuss the latest developments of OpenMP and its applications. WOMPAT 2001 was co-sponsored by the OpenMP Architecture Review Board (ARB). It followed a series of workshops on OpenMP, including WOMPAT 2000, EWOMP 2000, and WOMPEI 2000. For WOMPAT 2001, we solicited papers formally and published them in the form of this book. The authors submitted extended abstracts, which were reviewed by the program committee. All submitted papers were accepted. The authors were asked to prepare a nal paper in which they addressed the reviewers comments. The proceedings, in the form of this book, were created in time to be available at the workshop. In this way, we hope to have brought out a timely report of ongoing OpenMP-related research and development e orts as well as ideas for future improvements.
Publisher: Springer
ISBN: 3540445870
Category : Computers
Languages : en
Pages : 194
Book Description
This book contains the presentations given at the Workshop on OpenMP App- cations and Tools, WOMPAT 2001. The workshop was held on July 30 and 31, 2001 at Purdue University, West Lafayette, Indiana, USA. It brought together designers, users, and researchers of the OpenMP application programming int- face. OpenMP has emerged as the standard for shared memory parallel progr- ming. For the rst time, it is possible to write parallel programs that are portable across the majority of shared memory parallel computers. WOMPAT 2001 s- ved as a forum for all those interested in OpenMP and allowed them to meet, share ideas and experiences, and discuss the latest developments of OpenMP and its applications. WOMPAT 2001 was co-sponsored by the OpenMP Architecture Review Board (ARB). It followed a series of workshops on OpenMP, including WOMPAT 2000, EWOMP 2000, and WOMPEI 2000. For WOMPAT 2001, we solicited papers formally and published them in the form of this book. The authors submitted extended abstracts, which were reviewed by the program committee. All submitted papers were accepted. The authors were asked to prepare a nal paper in which they addressed the reviewers comments. The proceedings, in the form of this book, were created in time to be available at the workshop. In this way, we hope to have brought out a timely report of ongoing OpenMP-related research and development e orts as well as ideas for future improvements.
OpenMP Shared Memory Parallel Programming
Author: Matthias S. Müller
Publisher: Springer
ISBN: 3540685553
Category : Computers
Languages : en
Pages : 446
Book Description
This book constitutes the thoroughly refereed post-workshop proceedings of the First and the Second International Workshop on OpenMP, IWOMP 2005 and IWOMP 2006, held in Eugene, OR, USA, and in Reims, France, in June 2005 and 2006 respectively. The first part of the book presents 16 revised full papers carefully reviewed and selected from the IWOMP 2005 program and organized in topical sections on performance tools, compiler technology, run-time environment, applications, as well as the OpenMP language and its evaluation. In the second part there are 19 papers of IWOMP 2006, fully revised and grouped thematically in sections on advanced performance tuning aspects of code development applications, and proposed extensions to OpenMP.
Publisher: Springer
ISBN: 3540685553
Category : Computers
Languages : en
Pages : 446
Book Description
This book constitutes the thoroughly refereed post-workshop proceedings of the First and the Second International Workshop on OpenMP, IWOMP 2005 and IWOMP 2006, held in Eugene, OR, USA, and in Reims, France, in June 2005 and 2006 respectively. The first part of the book presents 16 revised full papers carefully reviewed and selected from the IWOMP 2005 program and organized in topical sections on performance tools, compiler technology, run-time environment, applications, as well as the OpenMP language and its evaluation. In the second part there are 19 papers of IWOMP 2006, fully revised and grouped thematically in sections on advanced performance tuning aspects of code development applications, and proposed extensions to OpenMP.