One-dimensional Functional Equations

One-dimensional Functional Equations PDF Author: Genrich Belitskii
Publisher: Birkhäuser
ISBN: 3034880790
Category : Mathematics
Languages : en
Pages : 223

Get Book Here

Book Description
The monograph is devoted to the study of functional equations with the transformed argument on the real line and on the unit circle. Such equations systematically arise in dynamical systems, differential equations, probabilities, singularities of smooth mappings, and other areas. The purpose of the book is to present modern methods and new results in the subject, with an emphasis on a connection between local and global solvability. The general concepts developed in the book are applicable to multidimensional functional equations. Some of the methods are presented for the first time in the monograph literature. The book is addressed to graduates and researchers interested in dynamical systems, differential equations, operator theory, or the theory of functions and their applications.

One-dimensional Functional Equations

One-dimensional Functional Equations PDF Author: Genrich Belitskii
Publisher: Birkhäuser
ISBN: 3034880790
Category : Mathematics
Languages : en
Pages : 223

Get Book Here

Book Description
The monograph is devoted to the study of functional equations with the transformed argument on the real line and on the unit circle. Such equations systematically arise in dynamical systems, differential equations, probabilities, singularities of smooth mappings, and other areas. The purpose of the book is to present modern methods and new results in the subject, with an emphasis on a connection between local and global solvability. The general concepts developed in the book are applicable to multidimensional functional equations. Some of the methods are presented for the first time in the monograph literature. The book is addressed to graduates and researchers interested in dynamical systems, differential equations, operator theory, or the theory of functions and their applications.

Functional Equations and How to Solve Them

Functional Equations and How to Solve Them PDF Author: Christopher G. Small
Publisher: Springer Science & Business Media
ISBN: 0387489010
Category : Mathematics
Languages : en
Pages : 139

Get Book Here

Book Description
Many books have been written on the theory of functional equations, but very few help readers solve functional equations in mathematics competitions and mathematical problem solving. This book fills that gap. Each chapter includes a list of problems associated with the covered material. These vary in difficulty, with the easiest being accessible to any high school student who has read the chapter carefully. The most difficult will challenge students studying for the International Mathematical Olympiad or the Putnam Competition. An appendix provides a springboard for further investigation of the concepts of limits, infinite series and continuity.

Analytic Solutions of Functional Equations

Analytic Solutions of Functional Equations PDF Author: Sui Sun Cheng
Publisher: World Scientific
ISBN: 9812793348
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
This book presents a self-contained and unified introduction to the properties of analytic functions. Based on recent research results, it provides many examples of functional equations to show how analytic solutions can be found.Unlike in other books, analytic functions are treated here as those generated by sequences with positive radii of convergence. By developing operational means for handling sequences, functional equations can then be transformed into recurrence relations or difference equations in a straightforward manner. Their solutions can also be found either by qualitative means or by computation. The subsequent formal power series function can then be asserted as a true solution once convergence is established by various convergence tests and majorization techniques. Functional equations in this book may also be functional differential equations or iterative equations, which are different from the differential equations studied in standard textbooks since composition of known or unknown functions are involved.

Handbook of Functional Equations

Handbook of Functional Equations PDF Author: Themistocles M. Rassias
Publisher: Springer
ISBN: 1493912860
Category : Mathematics
Languages : en
Pages : 394

Get Book Here

Book Description
This handbook consists of seventeen chapters written by eminent scientists from the international mathematical community, who present important research works in the field of mathematical analysis and related subjects, particularly in the Ulam stability theory of functional equations. The book provides an insight into a large domain of research with emphasis to the discussion of several theories, methods and problems in approximation theory, analytic inequalities, functional analysis, computational algebra and applications. The notion of stability of functional equations has its origins with S. M. Ulam, who posed the fundamental problem for approximate homomorphisms in 1940 and with D. H. Hyers, Th. M. Rassias, who provided the first significant solutions for additive and linear mappings in 1941 and 1978, respectively. During the last decade the notion of stability of functional equations has evolved into a very active domain of mathematical research with several applications of interdisciplinary nature. The chapters of this handbook focus mainly on both old and recent developments on the equation of homomorphism for square symmetric groupoids, the linear and polynomial functional equations in a single variable, the Drygas functional equation on amenable semigroups, monomial functional equation, the Cauchy–Jensen type mappings, differential equations and differential operators, operational equations and inclusions, generalized module left higher derivations, selections of set-valued mappings, D’Alembert’s functional equation, characterizations of information measures, functional equations in restricted domains, as well as generalized functional stability and fixed point theory.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Functional Analysis, Sobolev Spaces and Partial Differential Equations PDF Author: Haim Brezis
Publisher: Springer Science & Business Media
ISBN: 0387709142
Category : Mathematics
Languages : en
Pages : 600

Get Book Here

Book Description
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Handbook of Exact Solutions to Mathematical Equations

Handbook of Exact Solutions to Mathematical Equations PDF Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 1040092934
Category : Mathematics
Languages : en
Pages : 660

Get Book Here

Book Description
This reference book describes the exact solutions of the following types of mathematical equations: ● Algebraic and Transcendental Equations ● Ordinary Differential Equations ● Systems of Ordinary Differential Equations ● First-Order Partial Differential Equations ● Linear Equations and Problems of Mathematical Physics ● Nonlinear Equations of Mathematical Physics ● Systems of Partial Differential Equations ● Integral Equations ● Difference and Functional Equations ● Ordinary Functional Differential Equations ● Partial Functional Differential Equations The book delves into equations that find practical applications in a wide array of natural and engineering sciences, including the theory of heat and mass transfer, wave theory, hydrodynamics, gas dynamics, combustion theory, elasticity theory, general mechanics, theoretical physics, nonlinear optics, biology, chemical engineering sciences, ecology, and more. Most of these equations are of a reasonably general form and dependent on free parameters or arbitrary functions. The Handbook of Exact Solutions to Mathematical Equations generally has no analogs in world literature and contains a vast amount of new material. The exact solutions given in the book, being rigorous mathematical standards, can be used as test problems to assess the accuracy and verify the adequacy of various numerical and approximate analytical methods for solving mathematical equations, as well as to check and compare the effectiveness of exact analytical methods.

Handbook of Mathematics for Engineers and Scientists

Handbook of Mathematics for Engineers and Scientists PDF Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 1420010514
Category : Mathematics
Languages : en
Pages : 1542

Get Book Here

Book Description
Covering the main fields of mathematics, this handbook focuses on the methods used for obtaining solutions of various classes of mathematical equations that underlie the mathematical modeling of numerous phenomena and processes in science and technology. The authors describe formulas, methods, equations, and solutions that are frequently used in scientific and engineering applications and present classical as well as newer solution methods for various mathematical equations. The book supplies numerous examples, graphs, figures, and diagrams and contains many results in tabular form, including finite sums and series and exact solutions of differential, integral, and functional equations.

Introduction to Functional Equations

Introduction to Functional Equations PDF Author: Prasanna K. Sahoo
Publisher: CRC Press
ISBN: 1439841160
Category : Mathematics
Languages : en
Pages : 459

Get Book Here

Book Description
Introduction to Functional Equations grew out of a set of class notes from an introductory graduate level course at the University of Louisville. This introductory text communicates an elementary exposition of valued functional equations where the unknown functions take on real or complex values. In order to make the presentation as manageable as p

An Introduction to the Theory of Functional Equations and Inequalities

An Introduction to the Theory of Functional Equations and Inequalities PDF Author: Marek Kuczma
Publisher: Springer Science & Business Media
ISBN: 3764387491
Category : Mathematics
Languages : en
Pages : 595

Get Book Here

Book Description
Marek Kuczma was born in 1935 in Katowice, Poland, and died there in 1991. After finishing high school in his home town, he studied at the Jagiellonian University in Kraków. He defended his doctoral dissertation under the supervision of Stanislaw Golab. In the year of his habilitation, in 1963, he obtained a position at the Katowice branch of the Jagiellonian University (now University of Silesia, Katowice), and worked there till his death. Besides his several administrative positions and his outstanding teaching activity, he accomplished excellent and rich scientific work publishing three monographs and 180 scientific papers. He is considered to be the founder of the celebrated Polish school of functional equations and inequalities. "The second half of the title of this book describes its contents adequately. Probably even the most devoted specialist would not have thought that about 300 pages can be written just about the Cauchy equation (and on some closely related equations and inequalities). And the book is by no means chatty, and does not even claim completeness. Part I lists the required preliminary knowledge in set and measure theory, topology and algebra. Part II gives details on solutions of the Cauchy equation and of the Jensen inequality [...], in particular on continuous convex functions, Hamel bases, on inequalities following from the Jensen inequality [...]. Part III deals with related equations and inequalities (in particular, Pexider, Hosszú, and conditional equations, derivations, convex functions of higher order, subadditive functions and stability theorems). It concludes with an excursion into the field of extensions of homomorphisms in general." (Janos Aczel, Mathematical Reviews) "This book is a real holiday for all the mathematicians independently of their strict speciality. One can imagine what deliciousness represents this book for functional equationists." (B. Crstici, Zentralblatt für Mathematik)

Implicit Functions and Solution Mappings

Implicit Functions and Solution Mappings PDF Author: Asen L. Dontchev
Publisher: Springer
ISBN: 149391037X
Category : Mathematics
Languages : en
Pages : 495

Get Book Here

Book Description
The implicit function theorem is one of the most important theorems in analysis and its many variants are basic tools in partial differential equations and numerical analysis. This second edition of Implicit Functions and Solution Mappings presents an updated and more complete picture of the field by including solutions of problems that have been solved since the first edition was published, and places old and new results in a broader perspective. The purpose of this self-contained work is to provide a reference on the topic and to provide a unified collection of a number of results which are currently scattered throughout the literature. Updates to this edition include new sections in almost all chapters, new exercises and examples, updated commentaries to chapters and an enlarged index and references section.