Author: Hans L. Cycon
Publisher: Springer Science & Business Media
ISBN: 3540167587
Category : Computers
Languages : en
Pages : 337
Book Description
Are you looking for a concise summary of the theory of Schrödinger operators? Here it is. Emphasizing the progress made in the last decade by Lieb, Enss, Witten and others, the three authors don’t just cover general properties, but also detail multiparticle quantum mechanics – including bound states of Coulomb systems and scattering theory. This corrected and extended reprint contains updated references as well as notes on the development in the field over the past twenty years.
Schrödinger Operators
Author: Hans L. Cycon
Publisher: Springer Science & Business Media
ISBN: 3540167587
Category : Computers
Languages : en
Pages : 337
Book Description
Are you looking for a concise summary of the theory of Schrödinger operators? Here it is. Emphasizing the progress made in the last decade by Lieb, Enss, Witten and others, the three authors don’t just cover general properties, but also detail multiparticle quantum mechanics – including bound states of Coulomb systems and scattering theory. This corrected and extended reprint contains updated references as well as notes on the development in the field over the past twenty years.
Publisher: Springer Science & Business Media
ISBN: 3540167587
Category : Computers
Languages : en
Pages : 337
Book Description
Are you looking for a concise summary of the theory of Schrödinger operators? Here it is. Emphasizing the progress made in the last decade by Lieb, Enss, Witten and others, the three authors don’t just cover general properties, but also detail multiparticle quantum mechanics – including bound states of Coulomb systems and scattering theory. This corrected and extended reprint contains updated references as well as notes on the development in the field over the past twenty years.
One-Dimensional Ergodic Schrödinger Operators
Author: David Damanik
Publisher: American Mathematical Society
ISBN: 1470470861
Category : Mathematics
Languages : en
Pages : 464
Book Description
The theory of one-dimensional ergodic operators involves a beautiful synthesis of ideas from dynamical systems, topology, and analysis. Additionally, this setting includes many models of physical interest, including those operators that model crystals, disordered media, or quasicrystals. This field has seen substantial progress in recent decades, much of which has yet to be discussed in textbooks. Beginning with a refresher on key topics in spectral theory, this volume presents the basic theory of discrete one-dimensional Schrödinger operators with dynamically defined potentials. It also includes a self-contained introduction to the relevant aspects of ergodic theory and topological dynamics. This text is accessible to graduate students who have completed one-semester courses in measure theory and complex analysis. It is intended to serve as an introduction to the field for junior researchers and beginning graduate students as well as a reference text for people already working in this area. It is well suited for self-study and contains numerous exercises (many with hints).
Publisher: American Mathematical Society
ISBN: 1470470861
Category : Mathematics
Languages : en
Pages : 464
Book Description
The theory of one-dimensional ergodic operators involves a beautiful synthesis of ideas from dynamical systems, topology, and analysis. Additionally, this setting includes many models of physical interest, including those operators that model crystals, disordered media, or quasicrystals. This field has seen substantial progress in recent decades, much of which has yet to be discussed in textbooks. Beginning with a refresher on key topics in spectral theory, this volume presents the basic theory of discrete one-dimensional Schrödinger operators with dynamically defined potentials. It also includes a self-contained introduction to the relevant aspects of ergodic theory and topological dynamics. This text is accessible to graduate students who have completed one-semester courses in measure theory and complex analysis. It is intended to serve as an introduction to the field for junior researchers and beginning graduate students as well as a reference text for people already working in this area. It is well suited for self-study and contains numerous exercises (many with hints).
Spectral Theory of Random Schrödinger Operators
Author: R. Carmona
Publisher: Springer Science & Business Media
ISBN: 1461244889
Category : Mathematics
Languages : en
Pages : 611
Book Description
Since the seminal work of P. Anderson in 1958, localization in disordered systems has been the object of intense investigations. Mathematically speaking, the phenomenon can be described as follows: the self-adjoint operators which are used as Hamiltonians for these systems have a ten dency to have pure point spectrum, especially in low dimension or for large disorder. A lot of effort has been devoted to the mathematical study of the random self-adjoint operators relevant to the theory of localization for disordered systems. It is fair to say that progress has been made and that the un derstanding of the phenomenon has improved. This does not mean that the subject is closed. Indeed, the number of important problems actually solved is not larger than the number of those remaining. Let us mention some of the latter: • A proof of localization at all energies is still missing for two dimen sional systems, though it should be within reachable range. In the case of the two dimensional lattice, this problem has been approached by the investigation of a finite discrete band, but the limiting pro cedure necessary to reach the full two-dimensional lattice has never been controlled. • The smoothness properties of the density of states seem to escape all attempts in dimension larger than one. This problem is particularly serious in the continuous case where one does not even know if it is continuous.
Publisher: Springer Science & Business Media
ISBN: 1461244889
Category : Mathematics
Languages : en
Pages : 611
Book Description
Since the seminal work of P. Anderson in 1958, localization in disordered systems has been the object of intense investigations. Mathematically speaking, the phenomenon can be described as follows: the self-adjoint operators which are used as Hamiltonians for these systems have a ten dency to have pure point spectrum, especially in low dimension or for large disorder. A lot of effort has been devoted to the mathematical study of the random self-adjoint operators relevant to the theory of localization for disordered systems. It is fair to say that progress has been made and that the un derstanding of the phenomenon has improved. This does not mean that the subject is closed. Indeed, the number of important problems actually solved is not larger than the number of those remaining. Let us mention some of the latter: • A proof of localization at all energies is still missing for two dimen sional systems, though it should be within reachable range. In the case of the two dimensional lattice, this problem has been approached by the investigation of a finite discrete band, but the limiting pro cedure necessary to reach the full two-dimensional lattice has never been controlled. • The smoothness properties of the density of states seem to escape all attempts in dimension larger than one. This problem is particularly serious in the continuous case where one does not even know if it is continuous.
Proceedings of the St. Petersburg Mathematical Society Volume IV
Author: Olʹga Aleksandrovna Ladyzhenskai͡a
Publisher: American Mathematical Soc.
ISBN: 9780821806135
Category : Mathematical analysis
Languages : en
Pages : 264
Book Description
The 11 papers are devoted to analysis, probability, and applications. The topics include the limit distribution of a homogeneous polynomial on the unit sphere of large dimensions, a survey of measures on abelian groups, the extension of analytic solutions of linear partial differential equations, asymptotics of the spectrum for two model problems in the theory of liquid vibrations, and countable analogues of pseudo-compact and Stone-Cech extensions. One offering is a biographical sketch of Julian Vasil'evich Sochotskii (1842-1927). No index. Member prices are $92 for institutions and $69 for individuals. Annotation copyrighted by Book News, Inc., Portland, OR.
Publisher: American Mathematical Soc.
ISBN: 9780821806135
Category : Mathematical analysis
Languages : en
Pages : 264
Book Description
The 11 papers are devoted to analysis, probability, and applications. The topics include the limit distribution of a homogeneous polynomial on the unit sphere of large dimensions, a survey of measures on abelian groups, the extension of analytic solutions of linear partial differential equations, asymptotics of the spectrum for two model problems in the theory of liquid vibrations, and countable analogues of pseudo-compact and Stone-Cech extensions. One offering is a biographical sketch of Julian Vasil'evich Sochotskii (1842-1927). No index. Member prices are $92 for institutions and $69 for individuals. Annotation copyrighted by Book News, Inc., Portland, OR.
Substitution Dynamical Systems - Spectral Analysis
Author: Martine Queffélec
Publisher: Springer
ISBN: 3642112129
Category : Mathematics
Languages : en
Pages : 367
Book Description
This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many readers will benefit from the introductory chapters on the spectral theory of dynamical systems; others will find complements on the spectral study of bounded sequences; finally, a very basic presentation of substitutions, together with some recent findings and questions, rounds out the book.
Publisher: Springer
ISBN: 3642112129
Category : Mathematics
Languages : en
Pages : 367
Book Description
This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many readers will benefit from the introductory chapters on the spectral theory of dynamical systems; others will find complements on the spectral study of bounded sequences; finally, a very basic presentation of substitutions, together with some recent findings and questions, rounds out the book.
Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday
Author: Fritz Gesztesy
Publisher: American Mathematical Soc.
ISBN: 9780821842492
Category : Mathematics
Languages : en
Pages : 472
Book Description
This Festschrift had its origins in a conference called SimonFest held at Caltech, March 27-31, 2006, to honor Barry Simon's 60th birthday. It is not a proceedings volume in the usual sense since the emphasis of the majority of the contributions is on reviews of the state of the art of certain fields, with particular focus on recent developments and open problems. The bulk of the articles in this Festschrift are of this survey form, and a few review Simon's contributions to aparticular area. Part 1 contains surveys in the areas of Quantum Field Theory, Statistical Mechanics, Nonrelativistic Two-Body and $N$-Body Quantum Systems, Resonances, Quantum Mechanics with Electric and Magnetic Fields, and the Semiclassical Limit. Part 2 contains surveys in the areas of Random andErgodic Schrodinger Operators, Singular Continuous Spectrum, Orthogonal Polynomials, and Inverse Spectral Theory. In several cases, this collection of surveys portrays both the history of a subject and its current state of the art. A substantial part of the contributions to this Festschrift are survey articles on the state of the art of certain areas with special emphasis on open problems. This will benefit graduate students as well as researchers who want to get a quick, yet comprehensiveintroduction into an area covered in this volume.
Publisher: American Mathematical Soc.
ISBN: 9780821842492
Category : Mathematics
Languages : en
Pages : 472
Book Description
This Festschrift had its origins in a conference called SimonFest held at Caltech, March 27-31, 2006, to honor Barry Simon's 60th birthday. It is not a proceedings volume in the usual sense since the emphasis of the majority of the contributions is on reviews of the state of the art of certain fields, with particular focus on recent developments and open problems. The bulk of the articles in this Festschrift are of this survey form, and a few review Simon's contributions to aparticular area. Part 1 contains surveys in the areas of Quantum Field Theory, Statistical Mechanics, Nonrelativistic Two-Body and $N$-Body Quantum Systems, Resonances, Quantum Mechanics with Electric and Magnetic Fields, and the Semiclassical Limit. Part 2 contains surveys in the areas of Random andErgodic Schrodinger Operators, Singular Continuous Spectrum, Orthogonal Polynomials, and Inverse Spectral Theory. In several cases, this collection of surveys portrays both the history of a subject and its current state of the art. A substantial part of the contributions to this Festschrift are survey articles on the state of the art of certain areas with special emphasis on open problems. This will benefit graduate students as well as researchers who want to get a quick, yet comprehensiveintroduction into an area covered in this volume.
Spectral Measures and Dynamics: Typical Behaviors
Author: Moacir Aloisio
Publisher: Springer Nature
ISBN: 3031382897
Category : Science
Languages : en
Pages : 250
Book Description
This book convenes and deepens generic results about spectral measures, many of them available so far in scattered literature. It starts with classic topics such as Wiener lemma, Strichartz inequality, and the basics of fractal dimensions of measures, progressing to more advanced material, some of them developed by the own authors. A fundamental concept to the mathematical theory of quantum mechanics, the spectral measure relates to the components of the quantum state concerning the energy levels of the Hamiltonian operator and, on the other hand, to the dynamics of such state. However, these correspondences are not immediate, with many nuances and subtleties discovered in recent years. A valuable example of such subtleties is found in the so-called “Wonderland theorem” first published by B. Simon in 1995. It shows that, for some metric space of self-adjoint operators, the set of operators whose spectral measures are singular continuous is a generic set (which, for some, is exotic). Recent works have revealed that, on top of singular continuity, there are other generic properties of spectral measures. These properties are usually associated with a number of different notions of generalized dimensions, upper and lower dimensions, with dynamical implications in quantum mechanics, ergodicity of dynamical systems, and evolution semigroups. All this opens ways to new and instigating avenues of research. Graduate students with a specific interest in the spectral properties of spectral measure are the primary target audience for this work, while researchers benefit from a selection of important results, many of them presented in the book format for the first time.
Publisher: Springer Nature
ISBN: 3031382897
Category : Science
Languages : en
Pages : 250
Book Description
This book convenes and deepens generic results about spectral measures, many of them available so far in scattered literature. It starts with classic topics such as Wiener lemma, Strichartz inequality, and the basics of fractal dimensions of measures, progressing to more advanced material, some of them developed by the own authors. A fundamental concept to the mathematical theory of quantum mechanics, the spectral measure relates to the components of the quantum state concerning the energy levels of the Hamiltonian operator and, on the other hand, to the dynamics of such state. However, these correspondences are not immediate, with many nuances and subtleties discovered in recent years. A valuable example of such subtleties is found in the so-called “Wonderland theorem” first published by B. Simon in 1995. It shows that, for some metric space of self-adjoint operators, the set of operators whose spectral measures are singular continuous is a generic set (which, for some, is exotic). Recent works have revealed that, on top of singular continuity, there are other generic properties of spectral measures. These properties are usually associated with a number of different notions of generalized dimensions, upper and lower dimensions, with dynamical implications in quantum mechanics, ergodicity of dynamical systems, and evolution semigroups. All this opens ways to new and instigating avenues of research. Graduate students with a specific interest in the spectral properties of spectral measure are the primary target audience for this work, while researchers benefit from a selection of important results, many of them presented in the book format for the first time.
Operators, Semigroups, Algebras and Function Theory
Author: Yemon Choi
Publisher: Springer Nature
ISBN: 3031380207
Category : Mathematics
Languages : en
Pages : 262
Book Description
This volume collects contributions from participants in the IWOTA conference held virtually at Lancaster, UK, originally scheduled in 2020 but postponed to August 2021. It includes both survey articles and original research papers covering some of the main themes of the meeting.
Publisher: Springer Nature
ISBN: 3031380207
Category : Mathematics
Languages : en
Pages : 262
Book Description
This volume collects contributions from participants in the IWOTA conference held virtually at Lancaster, UK, originally scheduled in 2020 but postponed to August 2021. It includes both survey articles and original research papers covering some of the main themes of the meeting.
Number Theory and Physics
Author: Jean-Marc Luck
Publisher: Springer Science & Business Media
ISBN: 3642754058
Category : Science
Languages : en
Pages : 324
Book Description
7 Les Houches Number theory, or arithmetic, sometimes referred to as the queen of mathematics, is often considered as the purest branch of mathematics. It also has the false repu tation of being without any application to other areas of knowledge. Nevertheless, throughout their history, physical and natural sciences have experienced numerous unexpected relationships to number theory. The book entitled Number Theory in Science and Communication, by M.R. Schroeder (Springer Series in Information Sciences, Vol. 7, 1984) provides plenty of examples of cross-fertilization between number theory and a large variety of scientific topics. The most recent developments of theoretical physics have involved more and more questions related to number theory, and in an increasingly direct way. This new trend is especially visible in two broad families of physical problems. The first class, dynamical systems and quasiperiodicity, includes classical and quantum chaos, the stability of orbits in dynamical systems, K.A.M. theory, and problems with "small denominators", as well as the study of incommensurate structures, aperiodic tilings, and quasicrystals. The second class, which includes the string theory of fundamental interactions, completely integrable models, and conformally invariant two-dimensional field theories, seems to involve modular forms and p adic numbers in a remarkable way.
Publisher: Springer Science & Business Media
ISBN: 3642754058
Category : Science
Languages : en
Pages : 324
Book Description
7 Les Houches Number theory, or arithmetic, sometimes referred to as the queen of mathematics, is often considered as the purest branch of mathematics. It also has the false repu tation of being without any application to other areas of knowledge. Nevertheless, throughout their history, physical and natural sciences have experienced numerous unexpected relationships to number theory. The book entitled Number Theory in Science and Communication, by M.R. Schroeder (Springer Series in Information Sciences, Vol. 7, 1984) provides plenty of examples of cross-fertilization between number theory and a large variety of scientific topics. The most recent developments of theoretical physics have involved more and more questions related to number theory, and in an increasingly direct way. This new trend is especially visible in two broad families of physical problems. The first class, dynamical systems and quasiperiodicity, includes classical and quantum chaos, the stability of orbits in dynamical systems, K.A.M. theory, and problems with "small denominators", as well as the study of incommensurate structures, aperiodic tilings, and quasicrystals. The second class, which includes the string theory of fundamental interactions, completely integrable models, and conformally invariant two-dimensional field theories, seems to involve modular forms and p adic numbers in a remarkable way.
Extended States for the Schrödinger Operator with Quasi-Periodic Potential in Dimension Two
Author: Yulia Karpeshina
Publisher: American Mathematical Soc.
ISBN: 1470435438
Category : Mathematics
Languages : en
Pages : 152
Book Description
The authors consider a Schrödinger operator H=−Δ+V(x⃗ ) in dimension two with a quasi-periodic potential V(x⃗ ). They prove that the absolutely continuous spectrum of H contains a semiaxis and there is a family of generalized eigenfunctions at every point of this semiaxis with the following properties. First, the eigenfunctions are close to plane waves ei⟨ϰ⃗ ,x⃗ ⟩ in the high energy region. Second, the isoenergetic curves in the space of momenta ϰ⃗ corresponding to these eigenfunctions have the form of slightly distorted circles with holes (Cantor type structure). A new method of multiscale analysis in the momentum space is developed to prove these results. The result is based on a previous paper on the quasiperiodic polyharmonic operator (−Δ)l+V(x⃗ ), l>1. Here the authors address technical complications arising in the case l=1. However, this text is self-contained and can be read without familiarity with the previous paper.
Publisher: American Mathematical Soc.
ISBN: 1470435438
Category : Mathematics
Languages : en
Pages : 152
Book Description
The authors consider a Schrödinger operator H=−Δ+V(x⃗ ) in dimension two with a quasi-periodic potential V(x⃗ ). They prove that the absolutely continuous spectrum of H contains a semiaxis and there is a family of generalized eigenfunctions at every point of this semiaxis with the following properties. First, the eigenfunctions are close to plane waves ei⟨ϰ⃗ ,x⃗ ⟩ in the high energy region. Second, the isoenergetic curves in the space of momenta ϰ⃗ corresponding to these eigenfunctions have the form of slightly distorted circles with holes (Cantor type structure). A new method of multiscale analysis in the momentum space is developed to prove these results. The result is based on a previous paper on the quasiperiodic polyharmonic operator (−Δ)l+V(x⃗ ), l>1. Here the authors address technical complications arising in the case l=1. However, this text is self-contained and can be read without familiarity with the previous paper.