Author: Kenneth R. Meyer
Publisher: Springer
ISBN: 3319536915
Category : Mathematics
Languages : en
Pages : 389
Book Description
This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematics and engineering students. ... It is a well-organized and accessible introduction to the subject ... . This is an attractive book ... ." (William J. Satzer, The Mathematical Association of America, March, 2009) “The second edition of this text infuses new mathematical substance and relevance into an already modern classic ... and is sure to excite future generations of readers. ... This outstanding book can be used not only as an introductory course at the graduate level in mathematics, but also as course material for engineering graduate students. ... it is an elegant and invaluable reference for mathematicians and scientists with an interest in classical and celestial mechanics, astrodynamics, physics, biology, and related fields.” (Marian Gidea, Mathematical Reviews, Issue 2010 d)
Introduction to Hamiltonian Dynamical Systems and the N-Body Problem
Author: Kenneth R. Meyer
Publisher: Springer
ISBN: 3319536915
Category : Mathematics
Languages : en
Pages : 389
Book Description
This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematics and engineering students. ... It is a well-organized and accessible introduction to the subject ... . This is an attractive book ... ." (William J. Satzer, The Mathematical Association of America, March, 2009) “The second edition of this text infuses new mathematical substance and relevance into an already modern classic ... and is sure to excite future generations of readers. ... This outstanding book can be used not only as an introductory course at the graduate level in mathematics, but also as course material for engineering graduate students. ... it is an elegant and invaluable reference for mathematicians and scientists with an interest in classical and celestial mechanics, astrodynamics, physics, biology, and related fields.” (Marian Gidea, Mathematical Reviews, Issue 2010 d)
Publisher: Springer
ISBN: 3319536915
Category : Mathematics
Languages : en
Pages : 389
Book Description
This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematics and engineering students. ... It is a well-organized and accessible introduction to the subject ... . This is an attractive book ... ." (William J. Satzer, The Mathematical Association of America, March, 2009) “The second edition of this text infuses new mathematical substance and relevance into an already modern classic ... and is sure to excite future generations of readers. ... This outstanding book can be used not only as an introductory course at the graduate level in mathematics, but also as course material for engineering graduate students. ... it is an elegant and invaluable reference for mathematicians and scientists with an interest in classical and celestial mechanics, astrodynamics, physics, biology, and related fields.” (Marian Gidea, Mathematical Reviews, Issue 2010 d)
The Integral Manifolds of the Three Body Problem
Author: Christopher Keil McCord
Publisher: American Mathematical Soc.
ISBN: 0821806920
Category : Mathematics
Languages : en
Pages : 106
Book Description
The phase space of the spatial three-body problem is an open subset in R18. Holding the ten classical integrals of energu, center of mass, linear and angular momentum fixed defines an eight dimensional manifold. For fixed nonzero angular momentum, the topology of this manifold depends only on the energy. This volume computes the homology of this manifold for all energy values. This table of homology shows that for negative energy, the integral manifolds undergo seven bifurcations. Four of these are the well-known bifurcations due to central configurations, and three are due to "critical points at infinity". This disproves Birkhoffs conjecture that the bifurcations occur only at central configurations.
Publisher: American Mathematical Soc.
ISBN: 0821806920
Category : Mathematics
Languages : en
Pages : 106
Book Description
The phase space of the spatial three-body problem is an open subset in R18. Holding the ten classical integrals of energu, center of mass, linear and angular momentum fixed defines an eight dimensional manifold. For fixed nonzero angular momentum, the topology of this manifold depends only on the energy. This volume computes the homology of this manifold for all energy values. This table of homology shows that for negative energy, the integral manifolds undergo seven bifurcations. Four of these are the well-known bifurcations due to central configurations, and three are due to "critical points at infinity". This disproves Birkhoffs conjecture that the bifurcations occur only at central configurations.
The Restricted Three-Body Problem and Holomorphic Curves
Author: Urs Frauenfelder
Publisher: Springer
ISBN: 3319722786
Category : Mathematics
Languages : en
Pages : 381
Book Description
The book serves as an introduction to holomorphic curves in symplectic manifolds, focusing on the case of four-dimensional symplectizations and symplectic cobordisms, and their applications to celestial mechanics. The authors study the restricted three-body problem using recent techniques coming from the theory of pseudo-holomorphic curves. The book starts with an introduction to relevant topics in symplectic topology and Hamiltonian dynamics before introducing some well-known systems from celestial mechanics, such as the Kepler problem and the restricted three-body problem. After an overview of different regularizations of these systems, the book continues with a discussion of periodic orbits and global surfaces of section for these and more general systems. The second half of the book is primarily dedicated to developing the theory of holomorphic curves - specifically the theory of fast finite energy planes - to elucidate the proofs of the existence results for global surfaces of section stated earlier. The book closes with a chapter summarizing the results of some numerical experiments related to finding periodic orbits and global surfaces of sections in the restricted three-body problem. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019
Publisher: Springer
ISBN: 3319722786
Category : Mathematics
Languages : en
Pages : 381
Book Description
The book serves as an introduction to holomorphic curves in symplectic manifolds, focusing on the case of four-dimensional symplectizations and symplectic cobordisms, and their applications to celestial mechanics. The authors study the restricted three-body problem using recent techniques coming from the theory of pseudo-holomorphic curves. The book starts with an introduction to relevant topics in symplectic topology and Hamiltonian dynamics before introducing some well-known systems from celestial mechanics, such as the Kepler problem and the restricted three-body problem. After an overview of different regularizations of these systems, the book continues with a discussion of periodic orbits and global surfaces of section for these and more general systems. The second half of the book is primarily dedicated to developing the theory of holomorphic curves - specifically the theory of fast finite energy planes - to elucidate the proofs of the existence results for global surfaces of section stated earlier. The book closes with a chapter summarizing the results of some numerical experiments related to finding periodic orbits and global surfaces of sections in the restricted three-body problem. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019
Integral Manifolds of the Planar N-body Problem
Author: Alejandro Ramiro Lopez-Yanez
Publisher:
ISBN:
Category :
Languages : en
Pages : 100
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 100
Book Description
New Advances in Celestial Mechanics and Hamiltonian Systems
Author: Joaquín Delgado
Publisher: Springer Science & Business Media
ISBN: 1441990585
Category : Mathematics
Languages : en
Pages : 261
Book Description
The aim of the IV International Symposium on Hamiltonian Systems and Celestial Mechanics, HAMSYS-2001 was to join top researchers in the area of Celestial Mechanics, Hamiltonian systems and related topics in order to communicate new results and look forward for join research projects. For PhD students, this meeting offered also the opportunity of personal contact to help themselves in their own research, to call as well and promote the attention of young researchers and graduated students from our scientific community to the above topics, which are nowadays of interest and relevance in Celestial Mechanics and Hamiltonian dynamics. A glance to the achievements in the area in the last century came as a consequence of joint discussions in the workshop sessions, new problems were presented and lines of future research were delineated. Specific discussion topics included: New periodic orbits and choreographies in the n-body problem, singularities in few body problems, central configurations, restricted three body problem, geometrical mechanics, dynamics of charged problems, area preserving maps and Arnold diffusion.
Publisher: Springer Science & Business Media
ISBN: 1441990585
Category : Mathematics
Languages : en
Pages : 261
Book Description
The aim of the IV International Symposium on Hamiltonian Systems and Celestial Mechanics, HAMSYS-2001 was to join top researchers in the area of Celestial Mechanics, Hamiltonian systems and related topics in order to communicate new results and look forward for join research projects. For PhD students, this meeting offered also the opportunity of personal contact to help themselves in their own research, to call as well and promote the attention of young researchers and graduated students from our scientific community to the above topics, which are nowadays of interest and relevance in Celestial Mechanics and Hamiltonian dynamics. A glance to the achievements in the area in the last century came as a consequence of joint discussions in the workshop sessions, new problems were presented and lines of future research were delineated. Specific discussion topics included: New periodic orbits and choreographies in the n-body problem, singularities in few body problems, central configurations, restricted three body problem, geometrical mechanics, dynamics of charged problems, area preserving maps and Arnold diffusion.
Hamiltonian Systems And Celestial Mechanics (Hamsys-98) - Proceedings Of The Iii International Symposium
Author: J Delgado
Publisher: World Scientific
ISBN: 9814492116
Category : Science
Languages : en
Pages : 373
Book Description
This volume is an outgrowth of the Third International Symposium on Hamiltonian Systems and Celestial Mechanics. The main topics are Arnold diffusion, central configurations, singularities in few-body problems, billiards, area-preserving maps, and geometrical mechanics. All papers in the volume went through the refereeing process typical of a mathematical research journal.
Publisher: World Scientific
ISBN: 9814492116
Category : Science
Languages : en
Pages : 373
Book Description
This volume is an outgrowth of the Third International Symposium on Hamiltonian Systems and Celestial Mechanics. The main topics are Arnold diffusion, central configurations, singularities in few-body problems, billiards, area-preserving maps, and geometrical mechanics. All papers in the volume went through the refereeing process typical of a mathematical research journal.
Periodic Solutions of the N-Body Problem
Author: Kenneth R. Meyer
Publisher: Springer
ISBN: 3540480730
Category : Mathematics
Languages : en
Pages : 149
Book Description
The N-body problem is the classical prototype of a Hamiltonian system with a large symmetry group and many first integrals. These lecture notes are an introduction to the theory of periodic solutions of such Hamiltonian systems. From a generic point of view the N-body problem is highly degenerate. It is invariant under the symmetry group of Euclidean motions and admits linear momentum, angular momentum and energy as integrals. Therefore, the integrals and symmetries must be confronted head on, which leads to the definition of the reduced space where all the known integrals and symmetries have been eliminated. It is on the reduced space that one can hope for a nonsingular Jacobian without imposing extra symmetries. These lecture notes are intended for graduate students and researchers in mathematics or celestial mechanics with some knowledge of the theory of ODE or dynamical system theory. The first six chapters develops the theory of Hamiltonian systems, symplectic transformations and coordinates, periodic solutions and their multipliers, symplectic scaling, the reduced space etc. The remaining six chapters contain theorems which establish the existence of periodic solutions of the N-body problem on the reduced space.
Publisher: Springer
ISBN: 3540480730
Category : Mathematics
Languages : en
Pages : 149
Book Description
The N-body problem is the classical prototype of a Hamiltonian system with a large symmetry group and many first integrals. These lecture notes are an introduction to the theory of periodic solutions of such Hamiltonian systems. From a generic point of view the N-body problem is highly degenerate. It is invariant under the symmetry group of Euclidean motions and admits linear momentum, angular momentum and energy as integrals. Therefore, the integrals and symmetries must be confronted head on, which leads to the definition of the reduced space where all the known integrals and symmetries have been eliminated. It is on the reduced space that one can hope for a nonsingular Jacobian without imposing extra symmetries. These lecture notes are intended for graduate students and researchers in mathematics or celestial mechanics with some knowledge of the theory of ODE or dynamical system theory. The first six chapters develops the theory of Hamiltonian systems, symplectic transformations and coordinates, periodic solutions and their multipliers, symplectic scaling, the reduced space etc. The remaining six chapters contain theorems which establish the existence of periodic solutions of the N-body problem on the reduced space.
International Conference on Differential Equations, Berlin, Germany, 1-7 August, 1999
Author: Bernold Fiedler
Publisher: World Scientific
ISBN: 9789810249885
Category : Differential equations
Languages : en
Pages : 846
Book Description
This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences
Publisher: World Scientific
ISBN: 9789810249885
Category : Differential equations
Languages : en
Pages : 846
Book Description
This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences
Equadiff 99 (In 2 Volumes) - Proceedings Of The International Conference On Differential Equations
Author: Bernold Fiedler
Publisher: World Scientific
ISBN: 9814522163
Category : Mathematics
Languages : en
Pages : 838
Book Description
This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences.
Publisher: World Scientific
ISBN: 9814522163
Category : Mathematics
Languages : en
Pages : 838
Book Description
This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences.
Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds
Author: Taeyoung Lee
Publisher: Springer
ISBN: 3319569538
Category : Mathematics
Languages : en
Pages : 561
Book Description
This book provides an accessible introduction to the variational formulation of Lagrangian and Hamiltonian mechanics, with a novel emphasis on global descriptions of the dynamics, which is a significant conceptual departure from more traditional approaches based on the use of local coordinates on the configuration manifold. In particular, we introduce a general methodology for obtaining globally valid equations of motion on configuration manifolds that are Lie groups, homogeneous spaces, and embedded manifolds, thereby avoiding the difficulties associated with coordinate singularities. The material is presented in an approachable fashion by considering concrete configuration manifolds of increasing complexity, which then motivates and naturally leads to the more general formulation that follows. Understanding of the material is enhanced by numerous in-depth examples throughout the book, culminating in non-trivial applications involving multi-body systems. This book is written for a general audience of mathematicians, engineers, and physicists with a basic knowledge of mechanics. Some basic background in differential geometry is helpful, but not essential, as the relevant concepts are introduced in the book, thereby making the material accessible to a broad audience, and suitable for either self-study or as the basis for a graduate course in applied mathematics, engineering, or physics.
Publisher: Springer
ISBN: 3319569538
Category : Mathematics
Languages : en
Pages : 561
Book Description
This book provides an accessible introduction to the variational formulation of Lagrangian and Hamiltonian mechanics, with a novel emphasis on global descriptions of the dynamics, which is a significant conceptual departure from more traditional approaches based on the use of local coordinates on the configuration manifold. In particular, we introduce a general methodology for obtaining globally valid equations of motion on configuration manifolds that are Lie groups, homogeneous spaces, and embedded manifolds, thereby avoiding the difficulties associated with coordinate singularities. The material is presented in an approachable fashion by considering concrete configuration manifolds of increasing complexity, which then motivates and naturally leads to the more general formulation that follows. Understanding of the material is enhanced by numerous in-depth examples throughout the book, culminating in non-trivial applications involving multi-body systems. This book is written for a general audience of mathematicians, engineers, and physicists with a basic knowledge of mechanics. Some basic background in differential geometry is helpful, but not essential, as the relevant concepts are introduced in the book, thereby making the material accessible to a broad audience, and suitable for either self-study or as the basis for a graduate course in applied mathematics, engineering, or physics.