Author: Jitendra R. Raol
Publisher: CRC Press
ISBN: 1498745180
Category : Technology & Engineering
Languages : en
Pages : 581
Book Description
Nonlinear Filtering covers linear and nonlinear filtering in a comprehensive manner, with appropriate theoretic and practical development. Aspects of modeling, estimation, recursive filtering, linear filtering, and nonlinear filtering are presented with appropriate and sufficient mathematics. A modeling-control-system approach is used when applicable, and detailed practical applications are presented to elucidate the analysis and filtering concepts. MATLAB routines are included, and examples from a wide range of engineering applications - including aerospace, automated manufacturing, robotics, and advanced control systems - are referenced throughout the text.
Nonlinear Filtering
Author: Jitendra R. Raol
Publisher: CRC Press
ISBN: 1498745180
Category : Technology & Engineering
Languages : en
Pages : 581
Book Description
Nonlinear Filtering covers linear and nonlinear filtering in a comprehensive manner, with appropriate theoretic and practical development. Aspects of modeling, estimation, recursive filtering, linear filtering, and nonlinear filtering are presented with appropriate and sufficient mathematics. A modeling-control-system approach is used when applicable, and detailed practical applications are presented to elucidate the analysis and filtering concepts. MATLAB routines are included, and examples from a wide range of engineering applications - including aerospace, automated manufacturing, robotics, and advanced control systems - are referenced throughout the text.
Publisher: CRC Press
ISBN: 1498745180
Category : Technology & Engineering
Languages : en
Pages : 581
Book Description
Nonlinear Filtering covers linear and nonlinear filtering in a comprehensive manner, with appropriate theoretic and practical development. Aspects of modeling, estimation, recursive filtering, linear filtering, and nonlinear filtering are presented with appropriate and sufficient mathematics. A modeling-control-system approach is used when applicable, and detailed practical applications are presented to elucidate the analysis and filtering concepts. MATLAB routines are included, and examples from a wide range of engineering applications - including aerospace, automated manufacturing, robotics, and advanced control systems - are referenced throughout the text.
Nonlinear Filtering
Author: Kumar Pakki Bharani Chandra
Publisher: Springer
ISBN: 3030017974
Category : Technology & Engineering
Languages : en
Pages : 197
Book Description
This book gives readers in-depth know-how on methods of state estimation for nonlinear control systems. It starts with an introduction to dynamic control systems and system states and a brief description of the Kalman filter. In the following chapters, various state estimation techniques for nonlinear systems are discussed, including the extended, unscented and cubature Kalman filters. The cubature Kalman filter and its variants are introduced in particular detail because of their efficiency and their ability to deal with systems with Gaussian and/or non-Gaussian noise. The book also discusses information-filter and square-root-filtering algorithms, useful for state estimation in some real-time control system design problems. A number of case studies are included in the book to illustrate the application of various nonlinear filtering algorithms. Nonlinear Filtering is written for academic and industrial researchers, engineers and research students who are interested in nonlinear control systems analysis and design. The chief features of the book include: dedicated coverage of recently developed nonlinear, Jacobian-free, filtering algorithms; examples illustrating the use of nonlinear filtering algorithms in real-world applications; detailed derivation and complete algorithms for nonlinear filtering methods, which help readers to a fundamental understanding and easier coding of those algorithms; and MATLAB® codes associated with case-study applications, which can be downloaded from the Springer Extra Materials website.
Publisher: Springer
ISBN: 3030017974
Category : Technology & Engineering
Languages : en
Pages : 197
Book Description
This book gives readers in-depth know-how on methods of state estimation for nonlinear control systems. It starts with an introduction to dynamic control systems and system states and a brief description of the Kalman filter. In the following chapters, various state estimation techniques for nonlinear systems are discussed, including the extended, unscented and cubature Kalman filters. The cubature Kalman filter and its variants are introduced in particular detail because of their efficiency and their ability to deal with systems with Gaussian and/or non-Gaussian noise. The book also discusses information-filter and square-root-filtering algorithms, useful for state estimation in some real-time control system design problems. A number of case studies are included in the book to illustrate the application of various nonlinear filtering algorithms. Nonlinear Filtering is written for academic and industrial researchers, engineers and research students who are interested in nonlinear control systems analysis and design. The chief features of the book include: dedicated coverage of recently developed nonlinear, Jacobian-free, filtering algorithms; examples illustrating the use of nonlinear filtering algorithms in real-world applications; detailed derivation and complete algorithms for nonlinear filtering methods, which help readers to a fundamental understanding and easier coding of those algorithms; and MATLAB® codes associated with case-study applications, which can be downloaded from the Springer Extra Materials website.
Performance and Implementation Aspects of Nonlinear Filtering
Author: Gustaf Hendeby
Publisher: Linköping University Electronic Press
ISBN: 917393979X
Category : Technology & Engineering
Languages : en
Pages : 213
Book Description
Nonlinear filtering is an important standard tool for information and sensor fusion applications, e.g., localization, navigation, and tracking. It is an essential component in surveillance systems and of increasing importance for standard consumer products, such as cellular phones with localization, car navigation systems, and augmented reality. This thesis addresses several issues related to nonlinear filtering, including performance analysis of filtering and detection, algorithm analysis, and various implementation details. The most commonly used measure of filtering performance is the root mean square error (RMSE), which is bounded from below by the Cramér-Rao lower bound (CRLB). This thesis presents a methodology to determine the effect different noise distributions have on the CRLB. This leads up to an analysis of the intrinsic accuracy (IA), the informativeness of a noise distribution. For linear systems the resulting expressions are direct and can be used to determine whether a problem is feasible or not, and to indicate the efficacy of nonlinear methods such as the particle filter (PF). A similar analysis is used for change detection performance analysis, which once again shows the importance of IA. A problem with the RMSE evaluation is that it captures only one aspect of the resulting estimate and the distribution of the estimates can differ substantially. To solve this problem, the Kullback divergence has been evaluated demonstrating the shortcomings of pure RMSE evaluation. Two estimation algorithms have been analyzed in more detail; the Rao-Blackwellized particle filter (RBPF) by some authors referred to as the marginalized particle filter (MPF) and the unscented Kalman filter (UKF). The RBPF analysis leads to a new way of presenting the algorithm, thereby making it easier to implement. In addition the presentation can possibly give new intuition for the RBPF as being a stochastic Kalman filter bank. In the analysis of the UKF the focus is on the unscented transform (UT). The results include several simulation studies and a comparison with the Gauss approximation of the first and second order in the limit case. This thesis presents an implementation of a parallelized PF and outlines an object-oriented framework for filtering. The PF has been implemented on a graphics processing unit (GPU), i.e., a graphics card. The GPU is a inexpensive parallel computational resource available with most modern computers and is rarely used to its full potential. Being able to implement the PF in parallel makes new applications, where speed and good performance are important, possible. The object-oriented filtering framework provides the flexibility and performance needed for large scale Monte Carlo simulations using modern software design methodology. It can also be used to help to efficiently turn a prototype into a finished product.
Publisher: Linköping University Electronic Press
ISBN: 917393979X
Category : Technology & Engineering
Languages : en
Pages : 213
Book Description
Nonlinear filtering is an important standard tool for information and sensor fusion applications, e.g., localization, navigation, and tracking. It is an essential component in surveillance systems and of increasing importance for standard consumer products, such as cellular phones with localization, car navigation systems, and augmented reality. This thesis addresses several issues related to nonlinear filtering, including performance analysis of filtering and detection, algorithm analysis, and various implementation details. The most commonly used measure of filtering performance is the root mean square error (RMSE), which is bounded from below by the Cramér-Rao lower bound (CRLB). This thesis presents a methodology to determine the effect different noise distributions have on the CRLB. This leads up to an analysis of the intrinsic accuracy (IA), the informativeness of a noise distribution. For linear systems the resulting expressions are direct and can be used to determine whether a problem is feasible or not, and to indicate the efficacy of nonlinear methods such as the particle filter (PF). A similar analysis is used for change detection performance analysis, which once again shows the importance of IA. A problem with the RMSE evaluation is that it captures only one aspect of the resulting estimate and the distribution of the estimates can differ substantially. To solve this problem, the Kullback divergence has been evaluated demonstrating the shortcomings of pure RMSE evaluation. Two estimation algorithms have been analyzed in more detail; the Rao-Blackwellized particle filter (RBPF) by some authors referred to as the marginalized particle filter (MPF) and the unscented Kalman filter (UKF). The RBPF analysis leads to a new way of presenting the algorithm, thereby making it easier to implement. In addition the presentation can possibly give new intuition for the RBPF as being a stochastic Kalman filter bank. In the analysis of the UKF the focus is on the unscented transform (UT). The results include several simulation studies and a comparison with the Gauss approximation of the first and second order in the limit case. This thesis presents an implementation of a parallelized PF and outlines an object-oriented framework for filtering. The PF has been implemented on a graphics processing unit (GPU), i.e., a graphics card. The GPU is a inexpensive parallel computational resource available with most modern computers and is rarely used to its full potential. Being able to implement the PF in parallel makes new applications, where speed and good performance are important, possible. The object-oriented filtering framework provides the flexibility and performance needed for large scale Monte Carlo simulations using modern software design methodology. It can also be used to help to efficiently turn a prototype into a finished product.
Nonlinear Filters
Author: Hisashi Tanizaki
Publisher: Springer Science & Business Media
ISBN: 3662032236
Category : Business & Economics
Languages : en
Pages : 264
Book Description
Nonlinear and nonnormal filters are introduced and developed. Traditional nonlinear filters such as the extended Kalman filter and the Gaussian sum filter give biased filtering estimates, and therefore several nonlinear and nonnormal filters have been derived from the underlying probability density functions. The density-based nonlinear filters introduced in this book utilize numerical integration, Monte-Carlo integration with importance sampling or rejection sampling and the obtained filtering estimates are asymptotically unbiased and efficient. By Monte-Carlo simulation studies, all the nonlinear filters are compared. Finally, as an empirical application, consumption functions based on the rational expectation model are estimated for the nonlinear filters, where US, UK and Japan economies are compared.
Publisher: Springer Science & Business Media
ISBN: 3662032236
Category : Business & Economics
Languages : en
Pages : 264
Book Description
Nonlinear and nonnormal filters are introduced and developed. Traditional nonlinear filters such as the extended Kalman filter and the Gaussian sum filter give biased filtering estimates, and therefore several nonlinear and nonnormal filters have been derived from the underlying probability density functions. The density-based nonlinear filters introduced in this book utilize numerical integration, Monte-Carlo integration with importance sampling or rejection sampling and the obtained filtering estimates are asymptotically unbiased and efficient. By Monte-Carlo simulation studies, all the nonlinear filters are compared. Finally, as an empirical application, consumption functions based on the rational expectation model are estimated for the nonlinear filters, where US, UK and Japan economies are compared.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 978
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 978
Book Description
Nonlinear Filtering and Optimal Phase Tracking
Author: Zeev Schuss
Publisher: Springer Science & Business Media
ISBN: 1461404878
Category : Mathematics
Languages : en
Pages : 276
Book Description
This book offers an analytical rather than measure-theoretical approach to the derivation of the partial differential equations of nonlinear filtering theory. The basis for this approach is the discrete numerical scheme used in Monte-Carlo simulations of stochastic differential equations and Wiener's associated path integral representation of the transition probability density. Furthermore, it presents analytical methods for constructing asymptotic approximations to their solution and for synthesizing asymptotically optimal filters. It also offers a new approach to the phase tracking problem, based on optimizing the mean time to loss of lock. The book is based on lecture notes from a one-semester special topics course on stochastic processes and their applications that the author taught many times to graduate students of mathematics, applied mathematics, physics, chemistry, computer science, electrical engineering, and other disciplines. The book contains exercises and worked-out examples aimed at illustrating the methods of mathematical modeling and performance analysis of phase trackers.
Publisher: Springer Science & Business Media
ISBN: 1461404878
Category : Mathematics
Languages : en
Pages : 276
Book Description
This book offers an analytical rather than measure-theoretical approach to the derivation of the partial differential equations of nonlinear filtering theory. The basis for this approach is the discrete numerical scheme used in Monte-Carlo simulations of stochastic differential equations and Wiener's associated path integral representation of the transition probability density. Furthermore, it presents analytical methods for constructing asymptotic approximations to their solution and for synthesizing asymptotically optimal filters. It also offers a new approach to the phase tracking problem, based on optimizing the mean time to loss of lock. The book is based on lecture notes from a one-semester special topics course on stochastic processes and their applications that the author taught many times to graduate students of mathematics, applied mathematics, physics, chemistry, computer science, electrical engineering, and other disciplines. The book contains exercises and worked-out examples aimed at illustrating the methods of mathematical modeling and performance analysis of phase trackers.
Technical Abstract Bulletin
Author: Defense Documentation Center (U.S.)
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 784
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 784
Book Description
Nonlinear Filters
Author: Peyman Setoodeh
Publisher: John Wiley & Sons
ISBN: 1119078156
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
NONLINEAR FILTERS Discover the utility of using deep learning and (deep) reinforcement learning in deriving filtering algorithms with this insightful and powerful new resource Nonlinear Filters: Theory and Applications delivers an insightful view on state and parameter estimation by merging ideas from control theory, statistical signal processing, and machine learning. Taking an algorithmic approach, the book covers both classic and machine learning-based filtering algorithms. Readers of Nonlinear Filters will greatly benefit from the wide spectrum of presented topics including stability, robustness, computability, and algorithmic sufficiency. Readers will also enjoy: Organization that allows the book to act as a stand-alone, self-contained reference A thorough exploration of the notion of observability, nonlinear observers, and the theory of optimal nonlinear filtering that bridges the gap between different science and engineering disciplines A profound account of Bayesian filters including Kalman filter and its variants as well as particle filter A rigorous derivation of the smooth variable structure filter as a predictor-corrector estimator formulated based on a stability theorem, used to confine the estimated states within a neighborhood of their true values A concise tutorial on deep learning and reinforcement learning A detailed presentation of the expectation maximization algorithm and its machine learning-based variants, used for joint state and parameter estimation Guidelines for constructing nonparametric Bayesian models from parametric ones Perfect for researchers, professors, and graduate students in engineering, computer science, applied mathematics, and artificial intelligence, Nonlinear Filters: Theory and Applications will also earn a place in the libraries of those studying or practicing in fields involving pandemic diseases, cybersecurity, information fusion, augmented reality, autonomous driving, urban traffic network, navigation and tracking, robotics, power systems, hybrid technologies, and finance.
Publisher: John Wiley & Sons
ISBN: 1119078156
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
NONLINEAR FILTERS Discover the utility of using deep learning and (deep) reinforcement learning in deriving filtering algorithms with this insightful and powerful new resource Nonlinear Filters: Theory and Applications delivers an insightful view on state and parameter estimation by merging ideas from control theory, statistical signal processing, and machine learning. Taking an algorithmic approach, the book covers both classic and machine learning-based filtering algorithms. Readers of Nonlinear Filters will greatly benefit from the wide spectrum of presented topics including stability, robustness, computability, and algorithmic sufficiency. Readers will also enjoy: Organization that allows the book to act as a stand-alone, self-contained reference A thorough exploration of the notion of observability, nonlinear observers, and the theory of optimal nonlinear filtering that bridges the gap between different science and engineering disciplines A profound account of Bayesian filters including Kalman filter and its variants as well as particle filter A rigorous derivation of the smooth variable structure filter as a predictor-corrector estimator formulated based on a stability theorem, used to confine the estimated states within a neighborhood of their true values A concise tutorial on deep learning and reinforcement learning A detailed presentation of the expectation maximization algorithm and its machine learning-based variants, used for joint state and parameter estimation Guidelines for constructing nonparametric Bayesian models from parametric ones Perfect for researchers, professors, and graduate students in engineering, computer science, applied mathematics, and artificial intelligence, Nonlinear Filters: Theory and Applications will also earn a place in the libraries of those studying or practicing in fields involving pandemic diseases, cybersecurity, information fusion, augmented reality, autonomous driving, urban traffic network, navigation and tracking, robotics, power systems, hybrid technologies, and finance.
Digital Signal Processing Systems: Implementation Techniques
Author:
Publisher: Elsevier
ISBN: 0080529844
Category : Technology & Engineering
Languages : en
Pages : 414
Book Description
This volume on implementation techniques in digital signal processing systems clearly reveals the significance and power of the techniques that are available, and with further development, the essential role they will play as applied to a wide variety of areas. The authors are all to highly commended for their splendid contributors to this volume, which will provide a significant and unique international reference source for students, research workers, practicing engineers, and others for years to come.
Publisher: Elsevier
ISBN: 0080529844
Category : Technology & Engineering
Languages : en
Pages : 414
Book Description
This volume on implementation techniques in digital signal processing systems clearly reveals the significance and power of the techniques that are available, and with further development, the essential role they will play as applied to a wide variety of areas. The authors are all to highly commended for their splendid contributors to this volume, which will provide a significant and unique international reference source for students, research workers, practicing engineers, and others for years to come.
Statistical Inference for Engineers and Data Scientists
Author: Pierre Moulin
Publisher: Cambridge University Press
ISBN: 1107185920
Category : Mathematics
Languages : en
Pages : 423
Book Description
A mathematically accessible textbook introducing all the tools needed to address modern inference problems in engineering and data science.
Publisher: Cambridge University Press
ISBN: 1107185920
Category : Mathematics
Languages : en
Pages : 423
Book Description
A mathematically accessible textbook introducing all the tools needed to address modern inference problems in engineering and data science.