Author: Willard Miller
Publisher: American Mathematical Soc.
ISBN: 0821812505
Category : Lie algebras
Languages : en
Pages : 51
Book Description
On Lie Algebras and Some Special Functions of Mathematical Physics
Author: Willard Miller
Publisher: American Mathematical Soc.
ISBN: 0821812505
Category : Lie algebras
Languages : en
Pages : 51
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821812505
Category : Lie algebras
Languages : en
Pages : 51
Book Description
Representation of Lie Groups and Special Functions
Author: N.Ja. Vilenkin
Publisher: Springer Science & Business Media
ISBN: 9401728852
Category : Mathematics
Languages : en
Pages : 518
Book Description
In 1991-1993 our three-volume book "Representation of Lie Groups and Spe cial Functions" was published. When we started to write that book (in 1983), editors of "Kluwer Academic Publishers" expressed their wish for the book to be of encyclopaedic type on the subject. Interrelations between representations of Lie groups and special functions are very wide. This width can be explained by existence of different types of Lie groups and by richness of the theory of their rep resentations. This is why the book, mentioned above, spread to three big volumes. Influence of representations of Lie groups and Lie algebras upon the theory of special functions is lasting. This theory is developing further and methods of the representation theory are of great importance in this development. When the book "Representation of Lie Groups and Special Functions" ,vol. 1-3, was under preparation, new directions of the theory of special functions, connected with group representations, appeared. New important results were discovered in the traditional directions. This impelled us to write a continuation of our three-volume book on relationship between representations and special functions. The result of our further work is the present book. The three-volume book, published before, was devoted mainly to studying classical special functions and orthogonal polynomials by means of matrix elements, Clebsch-Gordan and Racah coefficients of group representations and to generaliza tions of classical special functions that were dictated by matrix elements of repre sentations.
Publisher: Springer Science & Business Media
ISBN: 9401728852
Category : Mathematics
Languages : en
Pages : 518
Book Description
In 1991-1993 our three-volume book "Representation of Lie Groups and Spe cial Functions" was published. When we started to write that book (in 1983), editors of "Kluwer Academic Publishers" expressed their wish for the book to be of encyclopaedic type on the subject. Interrelations between representations of Lie groups and special functions are very wide. This width can be explained by existence of different types of Lie groups and by richness of the theory of their rep resentations. This is why the book, mentioned above, spread to three big volumes. Influence of representations of Lie groups and Lie algebras upon the theory of special functions is lasting. This theory is developing further and methods of the representation theory are of great importance in this development. When the book "Representation of Lie Groups and Special Functions" ,vol. 1-3, was under preparation, new directions of the theory of special functions, connected with group representations, appeared. New important results were discovered in the traditional directions. This impelled us to write a continuation of our three-volume book on relationship between representations and special functions. The result of our further work is the present book. The three-volume book, published before, was devoted mainly to studying classical special functions and orthogonal polynomials by means of matrix elements, Clebsch-Gordan and Racah coefficients of group representations and to generaliza tions of classical special functions that were dictated by matrix elements of repre sentations.
Representation of Lie Groups and Special Functions
Author: N.Ja. Vilenkin
Publisher: Springer Science & Business Media
ISBN: 940113538X
Category : Mathematics
Languages : en
Pages : 635
Book Description
This is the first of three major volumes which present a comprehensive treatment of the theory of the main classes of special functions from the point of view of the theory of group representations. This volume deals with the properties of classical orthogonal polynomials and special functions which are related to representations of groups of matrices of second order and of groups of triangular matrices of third order. This material forms the basis of many results concerning classical special functions such as Bessel, MacDonald, Hankel, Whittaker, hypergeometric, and confluent hypergeometric functions, and different classes of orthogonal polynomials, including those having a discrete variable. Many new results are given. The volume is self-contained, since an introductory section presents basic required material from algebra, topology, functional analysis and group theory. For research mathematicians, physicists and engineers.
Publisher: Springer Science & Business Media
ISBN: 940113538X
Category : Mathematics
Languages : en
Pages : 635
Book Description
This is the first of three major volumes which present a comprehensive treatment of the theory of the main classes of special functions from the point of view of the theory of group representations. This volume deals with the properties of classical orthogonal polynomials and special functions which are related to representations of groups of matrices of second order and of groups of triangular matrices of third order. This material forms the basis of many results concerning classical special functions such as Bessel, MacDonald, Hankel, Whittaker, hypergeometric, and confluent hypergeometric functions, and different classes of orthogonal polynomials, including those having a discrete variable. Many new results are given. The volume is self-contained, since an introductory section presents basic required material from algebra, topology, functional analysis and group theory. For research mathematicians, physicists and engineers.
Lie Groups, Physics, and Geometry
Author: Robert Gilmore
Publisher: Cambridge University Press
ISBN: 113946907X
Category : Science
Languages : en
Pages : 5
Book Description
Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.
Publisher: Cambridge University Press
ISBN: 113946907X
Category : Science
Languages : en
Pages : 5
Book Description
Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.
Special Functions and the Theory of Group Representations
Author: Naum I͡Akovlevich Vilenkin
Publisher: American Mathematical Soc.
ISBN: 9780821886526
Category : Mathematics
Languages : en
Pages : 628
Book Description
Publisher: American Mathematical Soc.
ISBN: 9780821886526
Category : Mathematics
Languages : en
Pages : 628
Book Description
Representation of Lie Groups and Special Functions
Author: N.Ja. Vilenkin
Publisher: Springer Science & Business Media
ISBN: 9401728836
Category : Mathematics
Languages : en
Pages : 629
Book Description
This is the second of three major volumes which present a comprehensive treatment of the theory of the main classes of special functions from the point of view of the theory of group representations. This volume deals with the properties of special functions and orthogonal polynomials (Legendre, Gegenbauer, Jacobi, Laguerre, Bessel and others) which are related to the class 1 representations of various groups. The tree method for the construction of bases for representation spaces is given. `Continuous' bases in the spaces of functions on hyperboloids and cones and corresponding Poisson kernels are found. Also considered are the properties of the q-analogs of classical orthogonal polynomials, related to representations of the Chevalley groups and of special functions connected with fields of p-adic numbers. Much of the material included appears in book form for the first time and many of the topics are presented in a novel way. This volume will be of great interest to specialists in group representations, special functions, differential equations with partial derivatives and harmonic anlysis. Subscribers to the complete set of three volumes will be entitled to a discount of 15%.
Publisher: Springer Science & Business Media
ISBN: 9401728836
Category : Mathematics
Languages : en
Pages : 629
Book Description
This is the second of three major volumes which present a comprehensive treatment of the theory of the main classes of special functions from the point of view of the theory of group representations. This volume deals with the properties of special functions and orthogonal polynomials (Legendre, Gegenbauer, Jacobi, Laguerre, Bessel and others) which are related to the class 1 representations of various groups. The tree method for the construction of bases for representation spaces is given. `Continuous' bases in the spaces of functions on hyperboloids and cones and corresponding Poisson kernels are found. Also considered are the properties of the q-analogs of classical orthogonal polynomials, related to representations of the Chevalley groups and of special functions connected with fields of p-adic numbers. Much of the material included appears in book form for the first time and many of the topics are presented in a novel way. This volume will be of great interest to specialists in group representations, special functions, differential equations with partial derivatives and harmonic anlysis. Subscribers to the complete set of three volumes will be entitled to a discount of 15%.
Lie Theory and Special Functions
Author: Miller
Publisher: Academic Press
ISBN: 0080955517
Category : Mathematics
Languages : en
Pages : 357
Book Description
Lie Theory and Special Functions
Publisher: Academic Press
ISBN: 0080955517
Category : Mathematics
Languages : en
Pages : 357
Book Description
Lie Theory and Special Functions
Lie Groups, Lie Algebras, and Some of Their Applications
Author: Robert Gilmore
Publisher: Courier Corporation
ISBN: 0486131564
Category : Mathematics
Languages : en
Pages : 610
Book Description
This text introduces upper-level undergraduates to Lie group theory and physical applications. It further illustrates Lie group theory's role in several fields of physics. 1974 edition. Includes 75 figures and 17 tables, exercises and problems.
Publisher: Courier Corporation
ISBN: 0486131564
Category : Mathematics
Languages : en
Pages : 610
Book Description
This text introduces upper-level undergraduates to Lie group theory and physical applications. It further illustrates Lie group theory's role in several fields of physics. 1974 edition. Includes 75 figures and 17 tables, exercises and problems.
Lectures on Selected Topics in Mathematical Physics
Author: William A. Schwalm
Publisher: Morgan & Claypool Publishers
ISBN: 1681744503
Category : Science
Languages : en
Pages : 104
Book Description
This book provides an introduction to Lie Theory for first year graduate students and professional physicists who may not have across the theory in their studies. In particular, it is a summary overview of the theory of finite groups, a brief description of a manifold, and then an informal development of the theory of one-parameter Lie groups, especially as they apply to ordinary differential equations. The treatment is informal, but systematic and reasonably self-contained, as it assumes a familiarity with basic physics and applied calculus, but it does not assume additional mathematical training. Interested readers should have a fair chance of finding symmetries of a second order differential equation and should be able to use it to reduce the order of the differential equation.
Publisher: Morgan & Claypool Publishers
ISBN: 1681744503
Category : Science
Languages : en
Pages : 104
Book Description
This book provides an introduction to Lie Theory for first year graduate students and professional physicists who may not have across the theory in their studies. In particular, it is a summary overview of the theory of finite groups, a brief description of a manifold, and then an informal development of the theory of one-parameter Lie groups, especially as they apply to ordinary differential equations. The treatment is informal, but systematic and reasonably self-contained, as it assumes a familiarity with basic physics and applied calculus, but it does not assume additional mathematical training. Interested readers should have a fair chance of finding symmetries of a second order differential equation and should be able to use it to reduce the order of the differential equation.
Special Matrices of Mathematical Physics
Author: Ruben Aldrovandi
Publisher: World Scientific
ISBN: 9789812799838
Category : Mathematics
Languages : en
Pages : 344
Book Description
Ch. 1. Some fundamental notions. 1.1. Definitions. 1.2. Components of a matrix. 1.3. Matrix functions. 1.4. Normal matrices -- ch. 2. Evolving systems -- ch. 3. Markov chains. 3.1. Non-negative matrices. 3.2. General properties -- ch. 4. Glass transition -- ch. 5. The Kerner model. 5.1. A simple example: Se-As glass -- ch. 6. Formal developments. 6.1. Spectral aspects. 6.2. Reducibility and regularity. 6.3. Projectors and asymptotics. 6.4. Continuum time -- ch. 7. Equilibrium, dissipation and ergodicity. 7.1. Recurrence, transience and periodicity. 7.2. Detailed balancing and reversibility. 7.3. Ergodicity -- ch. 8. Prelude -- ch. 9. Definition and main properties. 9.1. Bases. 9.2. Double Fourier transform. 9.3. Random walks -- ch. 10. Discrete quantum mechanics. 10.1. Introduction. 10.2. Weyl-Heisenberg groups. 10.3. Weyl-Wigner transformations. 10.4. Braiding and quantum groups -- ch. 11. Quantum symplectic structure. 11.1. Matrix differential geometry. 11.2. The symplectic form. 11.3. The quantum fabric -- ch. 12. An organizing tool -- ch. 13. Bell polynomials. 13.1. Definition and elementary properties. 13.2. The matrix representation. 13.3. The Lagrange inversion formula. 13.4. Developments -- ch. 14. Determinants and traces. 14.1. Introduction. 14.2. Symmetric functions. 14.3. Polynomials. 14.4. Characteristic polynomials. 14.5. Lie algebras invariants -- ch. 15. Projectors and iterates. 15.1. Projectors, revisited. 15.2. Continuous iterates -- ch. 16. Gases: real and ideal. 16.1. Microcanonical ensemble. 16.2. The canonical ensemble. 16.3. The grand canonical ensemble. 16.4. Braid statistics. 16.5. Condensation theories. 16.6. The Fredholm formalism.
Publisher: World Scientific
ISBN: 9789812799838
Category : Mathematics
Languages : en
Pages : 344
Book Description
Ch. 1. Some fundamental notions. 1.1. Definitions. 1.2. Components of a matrix. 1.3. Matrix functions. 1.4. Normal matrices -- ch. 2. Evolving systems -- ch. 3. Markov chains. 3.1. Non-negative matrices. 3.2. General properties -- ch. 4. Glass transition -- ch. 5. The Kerner model. 5.1. A simple example: Se-As glass -- ch. 6. Formal developments. 6.1. Spectral aspects. 6.2. Reducibility and regularity. 6.3. Projectors and asymptotics. 6.4. Continuum time -- ch. 7. Equilibrium, dissipation and ergodicity. 7.1. Recurrence, transience and periodicity. 7.2. Detailed balancing and reversibility. 7.3. Ergodicity -- ch. 8. Prelude -- ch. 9. Definition and main properties. 9.1. Bases. 9.2. Double Fourier transform. 9.3. Random walks -- ch. 10. Discrete quantum mechanics. 10.1. Introduction. 10.2. Weyl-Heisenberg groups. 10.3. Weyl-Wigner transformations. 10.4. Braiding and quantum groups -- ch. 11. Quantum symplectic structure. 11.1. Matrix differential geometry. 11.2. The symplectic form. 11.3. The quantum fabric -- ch. 12. An organizing tool -- ch. 13. Bell polynomials. 13.1. Definition and elementary properties. 13.2. The matrix representation. 13.3. The Lagrange inversion formula. 13.4. Developments -- ch. 14. Determinants and traces. 14.1. Introduction. 14.2. Symmetric functions. 14.3. Polynomials. 14.4. Characteristic polynomials. 14.5. Lie algebras invariants -- ch. 15. Projectors and iterates. 15.1. Projectors, revisited. 15.2. Continuous iterates -- ch. 16. Gases: real and ideal. 16.1. Microcanonical ensemble. 16.2. The canonical ensemble. 16.3. The grand canonical ensemble. 16.4. Braid statistics. 16.5. Condensation theories. 16.6. The Fredholm formalism.