Author: Igor Frenkel
Publisher: American Mathematical Soc.
ISBN: 0821825550
Category : Mathematics
Languages : en
Pages : 79
Book Description
The basic definitions and properties of vertex operator algebras, modules, intertwining operators and related concepts are presented, following a fundamental analogy with Lie algebra theory. The first steps in the development of the general theory are taken, and various natural and useful reformulations of the axioms are given. In particular, tensor products of algebras and modules, adjoint vertex operators and contragradient modules, adjoint intertwining operators and fusion rules are studied in greater depth. This paper lays the monodromy-free axiomatic foundation of the general theory of vertex operator algebras, modules and intertwining operators.
On Axiomatic Approaches to Vertex Operator Algebras and Modules
Author: Igor Frenkel
Publisher: American Mathematical Soc.
ISBN: 0821825550
Category : Mathematics
Languages : en
Pages : 79
Book Description
The basic definitions and properties of vertex operator algebras, modules, intertwining operators and related concepts are presented, following a fundamental analogy with Lie algebra theory. The first steps in the development of the general theory are taken, and various natural and useful reformulations of the axioms are given. In particular, tensor products of algebras and modules, adjoint vertex operators and contragradient modules, adjoint intertwining operators and fusion rules are studied in greater depth. This paper lays the monodromy-free axiomatic foundation of the general theory of vertex operator algebras, modules and intertwining operators.
Publisher: American Mathematical Soc.
ISBN: 0821825550
Category : Mathematics
Languages : en
Pages : 79
Book Description
The basic definitions and properties of vertex operator algebras, modules, intertwining operators and related concepts are presented, following a fundamental analogy with Lie algebra theory. The first steps in the development of the general theory are taken, and various natural and useful reformulations of the axioms are given. In particular, tensor products of algebras and modules, adjoint vertex operators and contragradient modules, adjoint intertwining operators and fusion rules are studied in greater depth. This paper lays the monodromy-free axiomatic foundation of the general theory of vertex operator algebras, modules and intertwining operators.
Vertex Operator Algebras and the Monster
Author: Igor Frenkel
Publisher: Academic Press
ISBN: 0080874541
Category : Mathematics
Languages : en
Pages : 563
Book Description
This work is motivated by and develops connections between several branches of mathematics and physics--the theories of Lie algebras, finite groups and modular functions in mathematics, and string theory in physics. The first part of the book presents a new mathematical theory of vertex operator algebras, the algebraic counterpart of two-dimensional holomorphic conformal quantum field theory. The remaining part constructs the Monster finite simple group as the automorphism group of a very special vertex operator algebra, called the "moonshine module" because of its relevance to "monstrous moonshine."
Publisher: Academic Press
ISBN: 0080874541
Category : Mathematics
Languages : en
Pages : 563
Book Description
This work is motivated by and develops connections between several branches of mathematics and physics--the theories of Lie algebras, finite groups and modular functions in mathematics, and string theory in physics. The first part of the book presents a new mathematical theory of vertex operator algebras, the algebraic counterpart of two-dimensional holomorphic conformal quantum field theory. The remaining part constructs the Monster finite simple group as the automorphism group of a very special vertex operator algebra, called the "moonshine module" because of its relevance to "monstrous moonshine."
Introduction to Vertex Operator Algebras and Their Representations
Author: James Lepowsky
Publisher: Springer Science & Business Media
ISBN: 0817681868
Category : Mathematics
Languages : en
Pages : 330
Book Description
* Introduces the fundamental theory of vertex operator algebras and its basic techniques and examples. * Begins with a detailed presentation of the theoretical foundations and proceeds to a range of applications. * Includes a number of new, original results and brings fresh perspective to important works of many other researchers in algebra, lie theory, representation theory, string theory, quantum field theory, and other areas of math and physics.
Publisher: Springer Science & Business Media
ISBN: 0817681868
Category : Mathematics
Languages : en
Pages : 330
Book Description
* Introduces the fundamental theory of vertex operator algebras and its basic techniques and examples. * Begins with a detailed presentation of the theoretical foundations and proceeds to a range of applications. * Includes a number of new, original results and brings fresh perspective to important works of many other researchers in algebra, lie theory, representation theory, string theory, quantum field theory, and other areas of math and physics.
Vertex Algebras and Algebraic Curves
Author: Edward Frenkel
Publisher: American Mathematical Soc.
ISBN: 0821836749
Category : Mathematics
Languages : en
Pages : 418
Book Description
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.
Publisher: American Mathematical Soc.
ISBN: 0821836749
Category : Mathematics
Languages : en
Pages : 418
Book Description
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.
Vertex Algebras and Geometry
Author: Thomas Creutzig
Publisher: American Mathematical Soc.
ISBN: 1470437171
Category : Mathematics
Languages : en
Pages : 178
Book Description
This book contains the proceedings of the AMS Special Session on Vertex Algebras and Geometry, held from October 8–9, 2016, and the mini-conference on Vertex Algebras, held from October 10–11, 2016, in Denver, Colorado. The papers cover vertex algebras in connection with geometry and tensor categories, with topics in vertex rings, chiral algebroids, the Higgs branch conjecture, and applicability and use of vertex tensor categories.
Publisher: American Mathematical Soc.
ISBN: 1470437171
Category : Mathematics
Languages : en
Pages : 178
Book Description
This book contains the proceedings of the AMS Special Session on Vertex Algebras and Geometry, held from October 8–9, 2016, and the mini-conference on Vertex Algebras, held from October 10–11, 2016, in Denver, Colorado. The papers cover vertex algebras in connection with geometry and tensor categories, with topics in vertex rings, chiral algebroids, the Higgs branch conjecture, and applicability and use of vertex tensor categories.
On Axiomatic Approaches to Vertex Operator Algebras and Modules
Author: Igor Frenkel
Publisher: American Mathematical Soc.
ISBN: 9780821862179
Category : Mathematics
Languages : en
Pages : 84
Book Description
The notion of vertex operator algebra arises naturally in the vertex operator construction of the Monster---the largest sporadic finite simple group. From another perspective, the theory of vertex operator algebras and their modules forms the algebraic foundation of conformal field theory. Vertex operator algebras and conformal field theory are now known to be deeply related to many important areas of mathematics. This essentially self-contained monograph develops the basic axiomatic theory of vertex operator algebras and their modules and intertwining operators, following a fundamental analogy with Lie algebra theory. The main axiom, the ''Jacobi(-Cauchy) identity'', is a far-reaching analog of the Jacobi identity for Lie algebras. The authors show that the Jacobi identity is equivalent to suitably formulated rationality, commutativity, and associativity properties of products of quantum fields. A number of other foundational and useful results are also developed. This work was originally distributed as a preprint in 1989, and in view of the current widespread interest in the subject among mathematicians and theoretical physicists, its publication and availability should prove no less useful than when it was written.
Publisher: American Mathematical Soc.
ISBN: 9780821862179
Category : Mathematics
Languages : en
Pages : 84
Book Description
The notion of vertex operator algebra arises naturally in the vertex operator construction of the Monster---the largest sporadic finite simple group. From another perspective, the theory of vertex operator algebras and their modules forms the algebraic foundation of conformal field theory. Vertex operator algebras and conformal field theory are now known to be deeply related to many important areas of mathematics. This essentially self-contained monograph develops the basic axiomatic theory of vertex operator algebras and their modules and intertwining operators, following a fundamental analogy with Lie algebra theory. The main axiom, the ''Jacobi(-Cauchy) identity'', is a far-reaching analog of the Jacobi identity for Lie algebras. The authors show that the Jacobi identity is equivalent to suitably formulated rationality, commutativity, and associativity properties of products of quantum fields. A number of other foundational and useful results are also developed. This work was originally distributed as a preprint in 1989, and in view of the current widespread interest in the subject among mathematicians and theoretical physicists, its publication and availability should prove no less useful than when it was written.
Differential Geometric Methods In Theoretical Physics - Proceedings Of The Xx International Conference (In 2 Volumes)
Author: Sultan Catto
Publisher: World Scientific
ISBN: 9814555509
Category :
Languages : en
Pages : 1228
Book Description
This proceedings reports on some of the most recent advances on the interaction between Differential Geometry and Theoretical Physics, a very active and exciting area of contemporary research.The papers are grouped into the following four broad categories: Geometric Methods, Noncommutative Geometry, Quantum Gravity and Topological Quantum Field Theory. A few of the topics covered are Chern-Simons Theory and Generalizations, Knot Invariants, Models of 2D Gravity, Quantum Groups and Strings on Black Holes.
Publisher: World Scientific
ISBN: 9814555509
Category :
Languages : en
Pages : 1228
Book Description
This proceedings reports on some of the most recent advances on the interaction between Differential Geometry and Theoretical Physics, a very active and exciting area of contemporary research.The papers are grouped into the following four broad categories: Geometric Methods, Noncommutative Geometry, Quantum Gravity and Topological Quantum Field Theory. A few of the topics covered are Chern-Simons Theory and Generalizations, Knot Invariants, Models of 2D Gravity, Quantum Groups and Strings on Black Holes.
Conformal Field Theory
Author: Yavuz Nutku
Publisher: CRC Press
ISBN: 042998250X
Category : Science
Languages : en
Pages : 342
Book Description
This book provides an understanding of conformal field theory and its importance to both statistical mechanics and string theory. It introduces the Wess-Zumino-Novokov-Witten (WZNW) models and their current algebras, the affine Kac-Moody algebras.
Publisher: CRC Press
ISBN: 042998250X
Category : Science
Languages : en
Pages : 342
Book Description
This book provides an understanding of conformal field theory and its importance to both statistical mechanics and string theory. It introduces the Wess-Zumino-Novokov-Witten (WZNW) models and their current algebras, the affine Kac-Moody algebras.
Moonshine, the Monster, and Related Topics
Author: Chongying Dong
Publisher: American Mathematical Soc.
ISBN: 0821803859
Category : Mathematics
Languages : en
Pages : 382
Book Description
This is the proceedings of a Joint Summer Research Conference held at Mount Holyoke College in Jun 1994. As perhaps the first conference proceedings devoted exclusively to the subject known as "Moonshine", this work contains something for many mathematicians and physicists. Many of the results featured are not available elsewhere.
Publisher: American Mathematical Soc.
ISBN: 0821803859
Category : Mathematics
Languages : en
Pages : 382
Book Description
This is the proceedings of a Joint Summer Research Conference held at Mount Holyoke College in Jun 1994. As perhaps the first conference proceedings devoted exclusively to the subject known as "Moonshine", this work contains something for many mathematicians and physicists. Many of the results featured are not available elsewhere.
Spinor Construction of Vertex Operator Algebras, Triality, and $E^{(1)}_8$
Author: Alex J. Feingold
Publisher: American Mathematical Soc.
ISBN: 0821851284
Category : Mathematics
Languages : en
Pages : 158
Book Description
The theory of vertex operator algebras is a remarkably rich new mathematical field which captures the algebraic content of conformal field theory in physics. Ideas leading up to this theory appeared in physics as part of statistical mechanics and string theory. In mathematics, the axiomatic definitions crystallized in the work of Borcherds and in Vertex Operator Algebras and the Monster, by Frenkel, Lepowsky, and Meurman. The structure of monodromies of intertwining operators for modules of vertex operator algebras yield braid group representations and leads to natural generalizations of vertex operator algebras, such as superalgebras and para-algebras. Many examples of vertex operator algebras and their generalizations are related to constructions in classical representation theory and shed new light on the classical theory. This book accomplishes several goals. The authors provide an explicit spinor construction, using only Clifford algebras, of a vertex operator superalgebra structure on the direct sum of the basic and vector modules for the affine Kac-Moody algebra Dn(1). They also review and extend Chevalley's spinor construction of the 24-dimensional commutative nonassociative algebraic structure and triality on the direct sum of the three 8-dimensional D4-modules. Vertex operator para-algebras, introduced and developed independently in this book and by Dong and Lepowsky, are related to one-dimensional representations of the braid group. The authors also provide a unified approach to the Chevalley, Greiss, and E8 algebras and explain some of their similarities. A Third goal is to provide a purely spinor construction of the exceptional affine Lie algebra E8(1), a natural continuation of previous work on spinor and oscillator constructions of the classical affine Lie algebras. These constructions should easily extend to include the rest of the exceptional affine Lie algebras. The final objective is to develop an inductive technique of construction which could be applied to the Monster vertex operator algebra. Directed at mathematicians and physicists, this book should be accessible to graduate students with some background in finite-dimensional Lie algebras and their representations. Although some experience with affine Kac-Moody algebras would be useful, a summary of the relevant parts of that theory is included. This book shows how the concepts and techniques of Lie theory can be generalized to yield the algebraic structures associated with conformal field theory. The careful reader will also gain a detailed knowledge of how the spinor construction of classical triality lifts to the affine algebras and plays an important role in the spinor construction of vertex operator algebras, modules, and intertwining operators with nontrivial monodromies.
Publisher: American Mathematical Soc.
ISBN: 0821851284
Category : Mathematics
Languages : en
Pages : 158
Book Description
The theory of vertex operator algebras is a remarkably rich new mathematical field which captures the algebraic content of conformal field theory in physics. Ideas leading up to this theory appeared in physics as part of statistical mechanics and string theory. In mathematics, the axiomatic definitions crystallized in the work of Borcherds and in Vertex Operator Algebras and the Monster, by Frenkel, Lepowsky, and Meurman. The structure of monodromies of intertwining operators for modules of vertex operator algebras yield braid group representations and leads to natural generalizations of vertex operator algebras, such as superalgebras and para-algebras. Many examples of vertex operator algebras and their generalizations are related to constructions in classical representation theory and shed new light on the classical theory. This book accomplishes several goals. The authors provide an explicit spinor construction, using only Clifford algebras, of a vertex operator superalgebra structure on the direct sum of the basic and vector modules for the affine Kac-Moody algebra Dn(1). They also review and extend Chevalley's spinor construction of the 24-dimensional commutative nonassociative algebraic structure and triality on the direct sum of the three 8-dimensional D4-modules. Vertex operator para-algebras, introduced and developed independently in this book and by Dong and Lepowsky, are related to one-dimensional representations of the braid group. The authors also provide a unified approach to the Chevalley, Greiss, and E8 algebras and explain some of their similarities. A Third goal is to provide a purely spinor construction of the exceptional affine Lie algebra E8(1), a natural continuation of previous work on spinor and oscillator constructions of the classical affine Lie algebras. These constructions should easily extend to include the rest of the exceptional affine Lie algebras. The final objective is to develop an inductive technique of construction which could be applied to the Monster vertex operator algebra. Directed at mathematicians and physicists, this book should be accessible to graduate students with some background in finite-dimensional Lie algebras and their representations. Although some experience with affine Kac-Moody algebras would be useful, a summary of the relevant parts of that theory is included. This book shows how the concepts and techniques of Lie theory can be generalized to yield the algebraic structures associated with conformal field theory. The careful reader will also gain a detailed knowledge of how the spinor construction of classical triality lifts to the affine algebras and plays an important role in the spinor construction of vertex operator algebras, modules, and intertwining operators with nontrivial monodromies.