Author: Ivan Idris
Publisher: Packt Publishing Ltd
ISBN: 1849518939
Category : Computers
Languages : en
Pages : 357
Book Description
Written in Cookbook style, the code examples will take your Numpy skills to the next level. This book will take Python developers with basic Numpy skills to the next level through some practical recipes.
NumPy Cookbook
Author: Ivan Idris
Publisher: Packt Publishing Ltd
ISBN: 1849518939
Category : Computers
Languages : en
Pages : 357
Book Description
Written in Cookbook style, the code examples will take your Numpy skills to the next level. This book will take Python developers with basic Numpy skills to the next level through some practical recipes.
Publisher: Packt Publishing Ltd
ISBN: 1849518939
Category : Computers
Languages : en
Pages : 357
Book Description
Written in Cookbook style, the code examples will take your Numpy skills to the next level. This book will take Python developers with basic Numpy skills to the next level through some practical recipes.
Python Data Analysis Cookbook
Author: Ivan Idris
Publisher: Packt Publishing Ltd
ISBN: 1785283855
Category : Computers
Languages : en
Pages : 462
Book Description
Over 140 practical recipes to help you make sense of your data with ease and build production-ready data apps About This Book Analyze Big Data sets, create attractive visualizations, and manipulate and process various data types Packed with rich recipes to help you learn and explore amazing algorithms for statistics and machine learning Authored by Ivan Idris, expert in python programming and proud author of eight highly reviewed books Who This Book Is For This book teaches Python data analysis at an intermediate level with the goal of transforming you from journeyman to master. Basic Python and data analysis skills and affinity are assumed. What You Will Learn Set up reproducible data analysis Clean and transform data Apply advanced statistical analysis Create attractive data visualizations Web scrape and work with databases, Hadoop, and Spark Analyze images and time series data Mine text and analyze social networks Use machine learning and evaluate the results Take advantage of parallelism and concurrency In Detail Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You'll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios. Style and Approach The book is written in “cookbook” style striving for high realism in data analysis. Through the recipe-based format, you can read each recipe separately as required and immediately apply the knowledge gained.
Publisher: Packt Publishing Ltd
ISBN: 1785283855
Category : Computers
Languages : en
Pages : 462
Book Description
Over 140 practical recipes to help you make sense of your data with ease and build production-ready data apps About This Book Analyze Big Data sets, create attractive visualizations, and manipulate and process various data types Packed with rich recipes to help you learn and explore amazing algorithms for statistics and machine learning Authored by Ivan Idris, expert in python programming and proud author of eight highly reviewed books Who This Book Is For This book teaches Python data analysis at an intermediate level with the goal of transforming you from journeyman to master. Basic Python and data analysis skills and affinity are assumed. What You Will Learn Set up reproducible data analysis Clean and transform data Apply advanced statistical analysis Create attractive data visualizations Web scrape and work with databases, Hadoop, and Spark Analyze images and time series data Mine text and analyze social networks Use machine learning and evaluate the results Take advantage of parallelism and concurrency In Detail Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You'll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios. Style and Approach The book is written in “cookbook” style striving for high realism in data analysis. Through the recipe-based format, you can read each recipe separately as required and immediately apply the knowledge gained.
Python Cookbook
Author: David Beazley
Publisher: "O'Reilly Media, Inc."
ISBN: 1449357369
Category : Computers
Languages : en
Pages : 706
Book Description
If you need help writing programs in Python 3, or want to update older Python 2 code, this book is just the ticket. Packed with practical recipes written and tested with Python 3.3, this unique cookbook is for experienced Python programmers who want to focus on modern tools and idioms. Inside, youâ??ll find complete recipes for more than a dozen topics, covering the core Python language as well as tasks common to a wide variety of application domains. Each recipe contains code samples you can use in your projects right away, along with a discussion about how and why the solution works. Topics include: Data Structures and Algorithms Strings and Text Numbers, Dates, and Times Iterators and Generators Files and I/O Data Encoding and Processing Functions Classes and Objects Metaprogramming Modules and Packages Network and Web Programming Concurrency Utility Scripting and System Administration Testing, Debugging, and Exceptions C Extensions
Publisher: "O'Reilly Media, Inc."
ISBN: 1449357369
Category : Computers
Languages : en
Pages : 706
Book Description
If you need help writing programs in Python 3, or want to update older Python 2 code, this book is just the ticket. Packed with practical recipes written and tested with Python 3.3, this unique cookbook is for experienced Python programmers who want to focus on modern tools and idioms. Inside, youâ??ll find complete recipes for more than a dozen topics, covering the core Python language as well as tasks common to a wide variety of application domains. Each recipe contains code samples you can use in your projects right away, along with a discussion about how and why the solution works. Topics include: Data Structures and Algorithms Strings and Text Numbers, Dates, and Times Iterators and Generators Files and I/O Data Encoding and Processing Functions Classes and Objects Metaprogramming Modules and Packages Network and Web Programming Concurrency Utility Scripting and System Administration Testing, Debugging, and Exceptions C Extensions
Polars Cookbook
Author: Yuki Kakegawa
Publisher: Packt Publishing Ltd
ISBN: 180512515X
Category : Computers
Languages : en
Pages : 394
Book Description
Leverage Polars, a lightning-fast DataFrame library, to transform your Python-based data science projects with efficient data wrangling and manipulation Key Features Unlock the power of Python Polars for faster and more efficient data analysis workflows Master the fundamentals of Python Polars with step-by-step recipes Discover data manipulation techniques to apply across multiple data problems Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe Polars Cookbook is a comprehensive, hands-on guide to Python Polars, one of the first resources dedicated to this powerful data processing library. Written by Yuki Kakegawa, a seasoned data analytics consultant who has worked with industry leaders like Microsoft and Stanford Health Care, this book offers targeted, real-world solutions to data processing, manipulation, and analysis challenges. The book also includes a foreword by Marco Gorelli, a core contributor to Polars, ensuring expert insights into Polars' applications. From installation to advanced data operations, you’ll be guided through data manipulation, advanced querying, and performance optimization techniques. You’ll learn to work with large datasets, conduct sophisticated transformations, leverage powerful features like chaining, and understand its caveats. This book also shows you how to integrate Polars with other Python libraries such as pandas, numpy, and PyArrow, and explore deployment strategies for both on-premises and cloud environments like AWS, BigQuery, GCS, Snowflake, and S3. With use cases spanning data engineering, time series analysis, statistical analysis, and machine learning, Polars Cookbook provides essential techniques for optimizing and securing your workflows. By the end of this book, you'll possess the skills to design scalable, efficient, and reliable data processing solutions with Polars. What you will learn Read from different data sources and write to various files and databases Apply aggregations, window functions, and string manipulations Perform common data tasks such as handling missing values and performing list and array operations Discover how to reshape and tidy your data by pivoting, joining, and concatenating Analyze your time series data in Python Polars Create better workflows with testing and debugging Who this book is for This book is for data analysts, data scientists, and data engineers who want to learn how to use Polars in their workflows. Working knowledge of the Python programming language is required. Experience working with a DataFrame library such as pandas or PySpark will also be helpful.
Publisher: Packt Publishing Ltd
ISBN: 180512515X
Category : Computers
Languages : en
Pages : 394
Book Description
Leverage Polars, a lightning-fast DataFrame library, to transform your Python-based data science projects with efficient data wrangling and manipulation Key Features Unlock the power of Python Polars for faster and more efficient data analysis workflows Master the fundamentals of Python Polars with step-by-step recipes Discover data manipulation techniques to apply across multiple data problems Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe Polars Cookbook is a comprehensive, hands-on guide to Python Polars, one of the first resources dedicated to this powerful data processing library. Written by Yuki Kakegawa, a seasoned data analytics consultant who has worked with industry leaders like Microsoft and Stanford Health Care, this book offers targeted, real-world solutions to data processing, manipulation, and analysis challenges. The book also includes a foreword by Marco Gorelli, a core contributor to Polars, ensuring expert insights into Polars' applications. From installation to advanced data operations, you’ll be guided through data manipulation, advanced querying, and performance optimization techniques. You’ll learn to work with large datasets, conduct sophisticated transformations, leverage powerful features like chaining, and understand its caveats. This book also shows you how to integrate Polars with other Python libraries such as pandas, numpy, and PyArrow, and explore deployment strategies for both on-premises and cloud environments like AWS, BigQuery, GCS, Snowflake, and S3. With use cases spanning data engineering, time series analysis, statistical analysis, and machine learning, Polars Cookbook provides essential techniques for optimizing and securing your workflows. By the end of this book, you'll possess the skills to design scalable, efficient, and reliable data processing solutions with Polars. What you will learn Read from different data sources and write to various files and databases Apply aggregations, window functions, and string manipulations Perform common data tasks such as handling missing values and performing list and array operations Discover how to reshape and tidy your data by pivoting, joining, and concatenating Analyze your time series data in Python Polars Create better workflows with testing and debugging Who this book is for This book is for data analysts, data scientists, and data engineers who want to learn how to use Polars in their workflows. Working knowledge of the Python programming language is required. Experience working with a DataFrame library such as pandas or PySpark will also be helpful.
IPython Interactive Computing and Visualization Cookbook
Author: Cyrille Rossant
Publisher: Packt Publishing Ltd
ISBN: 178328482X
Category : Computers
Languages : en
Pages : 899
Book Description
Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.
Publisher: Packt Publishing Ltd
ISBN: 178328482X
Category : Computers
Languages : en
Pages : 899
Book Description
Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.
Python Feature Engineering Cookbook
Author: Soledad Galli
Publisher: Packt Publishing Ltd
ISBN: 1789807824
Category : Computers
Languages : en
Pages : 364
Book Description
Extract accurate information from data to train and improve machine learning models using NumPy, SciPy, pandas, and scikit-learn libraries Key FeaturesDiscover solutions for feature generation, feature extraction, and feature selectionUncover the end-to-end feature engineering process across continuous, discrete, and unstructured datasetsImplement modern feature extraction techniques using Python's pandas, scikit-learn, SciPy and NumPy librariesBook Description Feature engineering is invaluable for developing and enriching your machine learning models. In this cookbook, you will work with the best tools to streamline your feature engineering pipelines and techniques and simplify and improve the quality of your code. Using Python libraries such as pandas, scikit-learn, Featuretools, and Feature-engine, you’ll learn how to work with both continuous and discrete datasets and be able to transform features from unstructured datasets. You will develop the skills necessary to select the best features as well as the most suitable extraction techniques. This book will cover Python recipes that will help you automate feature engineering to simplify complex processes. You’ll also get to grips with different feature engineering strategies, such as the box-cox transform, power transform, and log transform across machine learning, reinforcement learning, and natural language processing (NLP) domains. By the end of this book, you’ll have discovered tips and practical solutions to all of your feature engineering problems. What you will learnSimplify your feature engineering pipelines with powerful Python packagesGet to grips with imputing missing valuesEncode categorical variables with a wide set of techniquesExtract insights from text quickly and effortlesslyDevelop features from transactional data and time series dataDerive new features by combining existing variablesUnderstand how to transform, discretize, and scale your variablesCreate informative variables from date and timeWho this book is for This book is for machine learning professionals, AI engineers, data scientists, and NLP and reinforcement learning engineers who want to optimize and enrich their machine learning models with the best features. Knowledge of machine learning and Python coding will assist you with understanding the concepts covered in this book.
Publisher: Packt Publishing Ltd
ISBN: 1789807824
Category : Computers
Languages : en
Pages : 364
Book Description
Extract accurate information from data to train and improve machine learning models using NumPy, SciPy, pandas, and scikit-learn libraries Key FeaturesDiscover solutions for feature generation, feature extraction, and feature selectionUncover the end-to-end feature engineering process across continuous, discrete, and unstructured datasetsImplement modern feature extraction techniques using Python's pandas, scikit-learn, SciPy and NumPy librariesBook Description Feature engineering is invaluable for developing and enriching your machine learning models. In this cookbook, you will work with the best tools to streamline your feature engineering pipelines and techniques and simplify and improve the quality of your code. Using Python libraries such as pandas, scikit-learn, Featuretools, and Feature-engine, you’ll learn how to work with both continuous and discrete datasets and be able to transform features from unstructured datasets. You will develop the skills necessary to select the best features as well as the most suitable extraction techniques. This book will cover Python recipes that will help you automate feature engineering to simplify complex processes. You’ll also get to grips with different feature engineering strategies, such as the box-cox transform, power transform, and log transform across machine learning, reinforcement learning, and natural language processing (NLP) domains. By the end of this book, you’ll have discovered tips and practical solutions to all of your feature engineering problems. What you will learnSimplify your feature engineering pipelines with powerful Python packagesGet to grips with imputing missing valuesEncode categorical variables with a wide set of techniquesExtract insights from text quickly and effortlesslyDevelop features from transactional data and time series dataDerive new features by combining existing variablesUnderstand how to transform, discretize, and scale your variablesCreate informative variables from date and timeWho this book is for This book is for machine learning professionals, AI engineers, data scientists, and NLP and reinforcement learning engineers who want to optimize and enrich their machine learning models with the best features. Knowledge of machine learning and Python coding will assist you with understanding the concepts covered in this book.
Machine Learning with Python Cookbook
Author: Kyle Gallatin
Publisher: "O'Reilly Media, Inc."
ISBN: 1098135695
Category : Computers
Languages : en
Pages : 416
Book Description
This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems, from loading data to training models and leveraging neural networks. Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure that it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications. You'll find recipes for: Vectors, matrices, and arrays Working with data from CSV, JSON, SQL, databases, cloud storage, and other sources Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Supporting vector machines (SVM), naäve Bayes, clustering, and tree-based models Saving, loading, and serving trained models from multiple frameworks
Publisher: "O'Reilly Media, Inc."
ISBN: 1098135695
Category : Computers
Languages : en
Pages : 416
Book Description
This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems, from loading data to training models and leveraging neural networks. Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure that it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications. You'll find recipes for: Vectors, matrices, and arrays Working with data from CSV, JSON, SQL, databases, cloud storage, and other sources Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Supporting vector machines (SVM), naäve Bayes, clustering, and tree-based models Saving, loading, and serving trained models from multiple frameworks
Machine Learning with Python Cookbook
Author: Chris Albon
Publisher: "O'Reilly Media, Inc."
ISBN: 1491989335
Category : Computers
Languages : en
Pages : 285
Book Description
This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data, handling text or numerical data, model selection, and dimensionality reduction and many other topics. Each recipe includes code that you can copy and paste into a toy dataset to ensure that it actually works. From there, you can insert, combine, or adapt the code to help construct your application. Recipes also include a discussion that explains the solution and provides meaningful context. This cookbook takes you beyond theory and concepts by providing the nuts and bolts you need to construct working machine learning applications. You’ll find recipes for: Vectors, matrices, and arrays Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naïve Bayes, clustering, and neural networks Saving and loading trained models
Publisher: "O'Reilly Media, Inc."
ISBN: 1491989335
Category : Computers
Languages : en
Pages : 285
Book Description
This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data, handling text or numerical data, model selection, and dimensionality reduction and many other topics. Each recipe includes code that you can copy and paste into a toy dataset to ensure that it actually works. From there, you can insert, combine, or adapt the code to help construct your application. Recipes also include a discussion that explains the solution and provides meaningful context. This cookbook takes you beyond theory and concepts by providing the nuts and bolts you need to construct working machine learning applications. You’ll find recipes for: Vectors, matrices, and arrays Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naïve Bayes, clustering, and neural networks Saving and loading trained models
Python Data Visualization Cookbook
Author: Igor Milovanovic
Publisher: Packt Publishing Ltd
ISBN: 1784394947
Category : Computers
Languages : en
Pages : 302
Book Description
Over 70 recipes to get you started with popular Python libraries based on the principal concepts of data visualization About This Book Learn how to set up an optimal Python environment for data visualization Understand how to import, clean and organize your data Determine different approaches to data visualization and how to choose the most appropriate for your needs Who This Book Is For If you already know about Python programming and want to understand data, data formats, data visualization, and how to use Python to visualize data then this book is for you. What You Will Learn Introduce yourself to the essential tooling to set up your working environment Explore your data using the capabilities of standard Python Data Library and Panda Library Draw your first chart and customize it Use the most popular data visualization Python libraries Make 3D visualizations mainly using mplot3d Create charts with images and maps Understand the most appropriate charts to describe your data Know the matplotlib hidden gems Use plot.ly to share your visualization online In Detail Python Data Visualization Cookbook will progress the reader from the point of installing and setting up a Python environment for data manipulation and visualization all the way to 3D animations using Python libraries. Readers will benefit from over 60 precise and reproducible recipes that will guide the reader towards a better understanding of data concepts and the building blocks for subsequent and sometimes more advanced concepts. Python Data Visualization Cookbook starts by showing how to set up matplotlib and the related libraries that are required for most parts of the book, before moving on to discuss some of the lesser-used diagrams and charts such as Gantt Charts or Sankey diagrams. Initially it uses simple plots and charts to more advanced ones, to make it easy to understand for readers. As the readers will go through the book, they will get to know about the 3D diagrams and animations. Maps are irreplaceable for displaying geo-spatial data, so this book will also show how to build them. In the last chapter, it includes explanation on how to incorporate matplotlib into different environments, such as a writing system, LaTeX, or how to create Gantt charts using Python. Style and approach A step-by-step recipe based approach to data visualization. The topics are explained sequentially as cookbook recipes consisting of a code snippet and the resulting visualization.
Publisher: Packt Publishing Ltd
ISBN: 1784394947
Category : Computers
Languages : en
Pages : 302
Book Description
Over 70 recipes to get you started with popular Python libraries based on the principal concepts of data visualization About This Book Learn how to set up an optimal Python environment for data visualization Understand how to import, clean and organize your data Determine different approaches to data visualization and how to choose the most appropriate for your needs Who This Book Is For If you already know about Python programming and want to understand data, data formats, data visualization, and how to use Python to visualize data then this book is for you. What You Will Learn Introduce yourself to the essential tooling to set up your working environment Explore your data using the capabilities of standard Python Data Library and Panda Library Draw your first chart and customize it Use the most popular data visualization Python libraries Make 3D visualizations mainly using mplot3d Create charts with images and maps Understand the most appropriate charts to describe your data Know the matplotlib hidden gems Use plot.ly to share your visualization online In Detail Python Data Visualization Cookbook will progress the reader from the point of installing and setting up a Python environment for data manipulation and visualization all the way to 3D animations using Python libraries. Readers will benefit from over 60 precise and reproducible recipes that will guide the reader towards a better understanding of data concepts and the building blocks for subsequent and sometimes more advanced concepts. Python Data Visualization Cookbook starts by showing how to set up matplotlib and the related libraries that are required for most parts of the book, before moving on to discuss some of the lesser-used diagrams and charts such as Gantt Charts or Sankey diagrams. Initially it uses simple plots and charts to more advanced ones, to make it easy to understand for readers. As the readers will go through the book, they will get to know about the 3D diagrams and animations. Maps are irreplaceable for displaying geo-spatial data, so this book will also show how to build them. In the last chapter, it includes explanation on how to incorporate matplotlib into different environments, such as a writing system, LaTeX, or how to create Gantt charts using Python. Style and approach A step-by-step recipe based approach to data visualization. The topics are explained sequentially as cookbook recipes consisting of a code snippet and the resulting visualization.
CMake Cookbook
Author: Radovan Bast
Publisher: Packt Publishing Ltd
ISBN: 1788472349
Category : Computers
Languages : en
Pages : 600
Book Description
Learn CMake through a series of task-based recipes that provide you with practical, simple, and ready-to-use CMake solutions for your code Key FeaturesLearn to configure, build, test, and package software written in C, C++, and FortranProgress from simple to advanced tasks with examples tested on Linux, macOS, and WindowsManage code complexity and library dependencies with reusable CMake building blocksBook Description CMake is cross-platform, open-source software for managing the build process in a portable fashion. This book features a collection of recipes and building blocks with tips and techniques for working with CMake, CTest, CPack, and CDash. CMake Cookbook includes real-world examples in the form of recipes that cover different ways to structure, configure, build, and test small- to large-scale code projects. You will learn to use CMake's command-line tools and master modern CMake practices for configuring, building, and testing binaries and libraries. With this book, you will be able to work with external libraries and structure your own projects in a modular and reusable way. You will be well-equipped to generate native build scripts for Linux, MacOS, and Windows, simplify and refactor projects using CMake, and port projects to CMake. What you will learnConfigure, build, test, and install code projects using CMakeDetect operating systems, processors, libraries, files, and programs for conditional compilationIncrease the portability of your codeRefactor a large codebase into modules with the help of CMakeBuild multi-language projectsKnow where and how to tweak CMake configuration files written by somebody elsePackage projects for distributionPort projects to CMakeWho this book is for If you are a software developer keen to manage build systems using CMake or would like to understand and modify CMake code written by others, this book is for you. A basic knowledge of C++, C, or Fortran is required to understand the topics covered in this book.
Publisher: Packt Publishing Ltd
ISBN: 1788472349
Category : Computers
Languages : en
Pages : 600
Book Description
Learn CMake through a series of task-based recipes that provide you with practical, simple, and ready-to-use CMake solutions for your code Key FeaturesLearn to configure, build, test, and package software written in C, C++, and FortranProgress from simple to advanced tasks with examples tested on Linux, macOS, and WindowsManage code complexity and library dependencies with reusable CMake building blocksBook Description CMake is cross-platform, open-source software for managing the build process in a portable fashion. This book features a collection of recipes and building blocks with tips and techniques for working with CMake, CTest, CPack, and CDash. CMake Cookbook includes real-world examples in the form of recipes that cover different ways to structure, configure, build, and test small- to large-scale code projects. You will learn to use CMake's command-line tools and master modern CMake practices for configuring, building, and testing binaries and libraries. With this book, you will be able to work with external libraries and structure your own projects in a modular and reusable way. You will be well-equipped to generate native build scripts for Linux, MacOS, and Windows, simplify and refactor projects using CMake, and port projects to CMake. What you will learnConfigure, build, test, and install code projects using CMakeDetect operating systems, processors, libraries, files, and programs for conditional compilationIncrease the portability of your codeRefactor a large codebase into modules with the help of CMakeBuild multi-language projectsKnow where and how to tweak CMake configuration files written by somebody elsePackage projects for distributionPort projects to CMakeWho this book is for If you are a software developer keen to manage build systems using CMake or would like to understand and modify CMake code written by others, this book is for you. A basic knowledge of C++, C, or Fortran is required to understand the topics covered in this book.