Numerical Study of Effervescent Atomization

Numerical Study of Effervescent Atomization PDF Author: Seyed Milad Mousavi
Publisher:
ISBN:
Category :
Languages : en
Pages : 92

Get Book Here

Book Description
Atomization is a process where the bulk of liquid jet disintegrates into liquid sheets, ligaments and droplets. It has enormous applications in industries and processes such as combustion, heat transfer systems, transport, biological systems and particularly our interest, coating processes. The Effervescent nozzle is a type of twin-fluid atomizer and has shown a superior performance in handling and spraying different liquids without any clogging issues; which is particularly interesting in thermal spray. In spite of significant number of experimental works, a few numerical works have been carried out. That makes it crucial to conduct a comprehensive numerical study on Effervescent atomizer. The complex internal and external behaviors of Effervescent atomizer are governing the behavior of the flow. The latter is a turbulent and compressible multiphase flow. It is studied numerically by employing a three-dimensional compressible Eulerian method along with Volume of Fluid (VOF) surface-tracking method coupled with the Large Eddy Simulation (LES) turbulence model. The numerical study is conducted by using OpenFoam library, an open-source package introduced by Open-CFD. In this study, the effect of varying the gas to liquid ratio (GLR) and the suspension (i.e. effect of viscosity, density and surface tension), on the structure of internal flow and consequently, the external flow is studied numerically. It is observed that the increase in GLR is accompanied with an evolution of the internal flow from a complex bubbly flow to an annular flow. This reduces the liquid film thickness at the discharge orifice. Further studies on internal pressure illustrated the critical condition, choked flow and pressure oscillations at the discharge orifice. The examination of increasing the GLR and evolving of internal flow resulted in changing in primary atomization parameters such as shortening the breakup length and widening the spray cone angle. Furthermore, the existence of a slip velocity between the two phases in the external flow results in dominant aerodynamic forces at high GLRs. Moreover, alternation of the liquid properties illustrated the higher spray velocity and wider cone angle of the spray, which demonstrates the superior performance of the Effervescent atomizer.

Numerical Study of Effervescent Atomization

Numerical Study of Effervescent Atomization PDF Author: Seyed Milad Mousavi
Publisher:
ISBN:
Category :
Languages : en
Pages : 92

Get Book Here

Book Description
Atomization is a process where the bulk of liquid jet disintegrates into liquid sheets, ligaments and droplets. It has enormous applications in industries and processes such as combustion, heat transfer systems, transport, biological systems and particularly our interest, coating processes. The Effervescent nozzle is a type of twin-fluid atomizer and has shown a superior performance in handling and spraying different liquids without any clogging issues; which is particularly interesting in thermal spray. In spite of significant number of experimental works, a few numerical works have been carried out. That makes it crucial to conduct a comprehensive numerical study on Effervescent atomizer. The complex internal and external behaviors of Effervescent atomizer are governing the behavior of the flow. The latter is a turbulent and compressible multiphase flow. It is studied numerically by employing a three-dimensional compressible Eulerian method along with Volume of Fluid (VOF) surface-tracking method coupled with the Large Eddy Simulation (LES) turbulence model. The numerical study is conducted by using OpenFoam library, an open-source package introduced by Open-CFD. In this study, the effect of varying the gas to liquid ratio (GLR) and the suspension (i.e. effect of viscosity, density and surface tension), on the structure of internal flow and consequently, the external flow is studied numerically. It is observed that the increase in GLR is accompanied with an evolution of the internal flow from a complex bubbly flow to an annular flow. This reduces the liquid film thickness at the discharge orifice. Further studies on internal pressure illustrated the critical condition, choked flow and pressure oscillations at the discharge orifice. The examination of increasing the GLR and evolving of internal flow resulted in changing in primary atomization parameters such as shortening the breakup length and widening the spray cone angle. Furthermore, the existence of a slip velocity between the two phases in the external flow results in dominant aerodynamic forces at high GLRs. Moreover, alternation of the liquid properties illustrated the higher spray velocity and wider cone angle of the spray, which demonstrates the superior performance of the Effervescent atomizer.

Numerical Simulation of Two-phase Flow in an Effervescent Atomizer for Nano-suspension Spray

Numerical Simulation of Two-phase Flow in an Effervescent Atomizer for Nano-suspension Spray PDF Author: Sanaz Arabzadeh Esfarjani
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Liquid atomization is widely used in industrial applications such as aerospace, combustion, pharmaceutical, spray coatings, and surface engineering. The main concern of atomization is to have a controllable and uniform spray. In suspension plasma spraying technique, where the attempt is to reach nano-scaled uniform coatings, there is a vital demand to produce a uniform and non-pulsating spray. Effervescent atomizers, in which a gas is bubbled into the bulk liquid through an aerator, have shown to be a technological alternative to the conventional atomizers when atomization of liquids with large variety of viscosity and density is required. Thus, understanding the behavior of gas and liquid flow through the nozzle is crucial to predict the condition of outcoming spray. The objective of this study is to numerically investigate the two-phase flow inside the effervescent atomizers. Using the incompressible Eulerian/Eulerian approach, the three-dimensional structure of two-phase flow inside an aerated-liquid injector is modeled. The behavior of liquid film in the discharge passage is investigated using different Gas to Liquid mass flow Ratios (GLR). These numerical results are compared with the experimental data available in literature. The effect of nano-sized solid particles concentration on the liquid film thickness at the exit of the atomizer is studied through the change in liquid bulk density and viscosity.

Numerical Study of Liquid Atomization and Breakup Using the Volume of Fluid Method in ANSYS Fluent

Numerical Study of Liquid Atomization and Breakup Using the Volume of Fluid Method in ANSYS Fluent PDF Author: Sai Saran Kandati
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


IGEC Transactions, Volume 1: Energy Conversion and Management

IGEC Transactions, Volume 1: Energy Conversion and Management PDF Author: Jian Zhao
Publisher: Springer Nature
ISBN: 3031489020
Category :
Languages : en
Pages : 508

Get Book Here

Book Description


Liquid Atomization

Liquid Atomization PDF Author: L.P. Bayvel
Publisher: Routledge
ISBN: 1351434950
Category : Science
Languages : en
Pages : 488

Get Book Here

Book Description
Covering the basics of liquid atomization, this book familiarizes readers with the physical processes of liquid atomization, the main types of atomizers and their design, measurements of spray characteristics, experimental investigations of atomizers, and application of atomizers. It demonstrates how to calculate and design atomizers and how to mea

Atomization and Sprays

Atomization and Sprays PDF Author: Arthur Lefebvre
Publisher: CRC Press
ISBN: 1482227851
Category : Nature
Languages : en
Pages : 434

Get Book Here

Book Description
Atomization and Sprays examines the atomization of liquids and characteristics of sprays. It explains the physical processes of atomization as well as guidelines for designing atomizers. In addition, it demonstrates how the importance of the size and velocity of a particle contributes to improved spray characterization. Coverage includes general co

Experimental Study of Two-Phase Flow in a Liquid Cross-Flow and an Effervescent Atomizer

Experimental Study of Two-Phase Flow in a Liquid Cross-Flow and an Effervescent Atomizer PDF Author: Mona Hassanzadeh Jobehdar
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Effervescent atomization uses the internal gas-liquid mixture to produce spray. The behavior of two-phase flow inside the atomizer influences the spray characteristics and is dependent on the atomizer internal geometry and operating conditions. The present study is conducted in two parts; study of the bubble formation from a novel submerged nozzle in a liquid cross-flow and investigation of the internal and external two-phase flows in an effervescent atomizer. The present study investigated the performance of a novel nozzle developed by Gadallah and Siddiqui (2013) in the liquid cross-flow. The impact of the nozzle shape, its configurations and orientations was experimentally investigated. The results showed that the novel nozzle generates smaller bubbles at higher detachment frequency for all cases compared to the standard nozzle. It is found that the elastic rebound of the bubble from a side hole plays a key role in the early bubble detachment. For the effervescent atomizer study, the impact of atomizer's internal geometry on the internal flow and spray droplet characteristics were studied. The results demonstrated that a conical base aerator tube and shorter mixing zone length provide more uniform bubbles in smaller size. A new type of bubble breaker was designed and tested in an effervescent atomizer. The results show that both internal and external two-phase flows in the atomizer were strongly influenced by bubble breaker configurations (diameter and number of holes). It was found that the liquid shear stress is the dominant force causing the bubble elongation and its eventual breakup.

Investigation of Effervescent Atomization Using Laser-based Measurement Techniques

Investigation of Effervescent Atomization Using Laser-based Measurement Techniques PDF Author: Sina Ghaemi
Publisher:
ISBN:
Category : Atomization
Languages : en
Pages :

Get Book Here

Book Description


Handbook of Atomization and Sprays

Handbook of Atomization and Sprays PDF Author: Nasser Ashgriz
Publisher: Springer Science & Business Media
ISBN: 1441972641
Category : Technology & Engineering
Languages : en
Pages : 922

Get Book Here

Book Description
Atomization and sprays are used in a wide range of industries: mechanical, chemical, aerospace, and civil engineering; material science and metallurgy; food; pharmaceutical, forestry, environmental protection; medicine; agriculture; meteorology and others. Some specific applications are spray combustion in furnaces, gas turbines and rockets, spray drying and cooling, air conditioning, powdered metallurgy, spray painting and coating, inhalation therapy, and many others. The Handbook of Atomization and Sprays will bring together the fundamental and applied material from all fields into one comprehensive source. Subject areas included in the reference are droplets, theoretical models and numerical simulations, phase Doppler particle analysis, applications, devices and more.

Some Aspects of Effervescent Atomization: Experimental Study

Some Aspects of Effervescent Atomization: Experimental Study PDF Author: Vysoké učení technické v Brně. Energetický ústav
Publisher:
ISBN: 9788021446984
Category :
Languages : en
Pages : 35

Get Book Here

Book Description