Author: Peter Eris Kloeden
Publisher: Springer Science & Business Media
ISBN: 3642579132
Category : Mathematics
Languages : en
Pages : 304
Book Description
This book provides an easily accessible, computationally-oriented introduction into the numerical solution of stochastic differential equations using computer experiments. It develops in the reader an ability to apply numerical methods solving stochastic differential equations. It also creates an intuitive understanding of the necessary theoretical background. Software containing programs for over 100 problems is available online.
Numerical Solution of SDE Through Computer Experiments
Numerical Solution of Stochastic Differential Equations with Jumps in Finance
Author: Eckhard Platen
Publisher: Springer Science & Business Media
ISBN: 364213694X
Category : Mathematics
Languages : en
Pages : 868
Book Description
In financial and actuarial modeling and other areas of application, stochastic differential equations with jumps have been employed to describe the dynamics of various state variables. The numerical solution of such equations is more complex than that of those only driven by Wiener processes, described in Kloeden & Platen: Numerical Solution of Stochastic Differential Equations (1992). The present monograph builds on the above-mentioned work and provides an introduction to stochastic differential equations with jumps, in both theory and application, emphasizing the numerical methods needed to solve such equations. It presents many new results on higher-order methods for scenario and Monte Carlo simulation, including implicit, predictor corrector, extrapolation, Markov chain and variance reduction methods, stressing the importance of their numerical stability. Furthermore, it includes chapters on exact simulation, estimation and filtering. Besides serving as a basic text on quantitative methods, it offers ready access to a large number of potential research problems in an area that is widely applicable and rapidly expanding. Finance is chosen as the area of application because much of the recent research on stochastic numerical methods has been driven by challenges in quantitative finance. Moreover, the volume introduces readers to the modern benchmark approach that provides a general framework for modeling in finance and insurance beyond the standard risk-neutral approach. It requires undergraduate background in mathematical or quantitative methods, is accessible to a broad readership, including those who are only seeking numerical recipes, and includes exercises that help the reader develop a deeper understanding of the underlying mathematics.
Publisher: Springer Science & Business Media
ISBN: 364213694X
Category : Mathematics
Languages : en
Pages : 868
Book Description
In financial and actuarial modeling and other areas of application, stochastic differential equations with jumps have been employed to describe the dynamics of various state variables. The numerical solution of such equations is more complex than that of those only driven by Wiener processes, described in Kloeden & Platen: Numerical Solution of Stochastic Differential Equations (1992). The present monograph builds on the above-mentioned work and provides an introduction to stochastic differential equations with jumps, in both theory and application, emphasizing the numerical methods needed to solve such equations. It presents many new results on higher-order methods for scenario and Monte Carlo simulation, including implicit, predictor corrector, extrapolation, Markov chain and variance reduction methods, stressing the importance of their numerical stability. Furthermore, it includes chapters on exact simulation, estimation and filtering. Besides serving as a basic text on quantitative methods, it offers ready access to a large number of potential research problems in an area that is widely applicable and rapidly expanding. Finance is chosen as the area of application because much of the recent research on stochastic numerical methods has been driven by challenges in quantitative finance. Moreover, the volume introduces readers to the modern benchmark approach that provides a general framework for modeling in finance and insurance beyond the standard risk-neutral approach. It requires undergraduate background in mathematical or quantitative methods, is accessible to a broad readership, including those who are only seeking numerical recipes, and includes exercises that help the reader develop a deeper understanding of the underlying mathematics.
Diffusion Processes, Jump Processes, and Stochastic Differential Equations
Author: Wojbor A. Woyczyński
Publisher: CRC Press
ISBN: 1000475352
Category : Mathematics
Languages : en
Pages : 138
Book Description
Diffusion Processes, Jump Processes, and Stochastic Differential Equations provides a compact exposition of the results explaining interrelations between diffusion stochastic processes, stochastic differential equations and the fractional infinitesimal operators. The draft of this book has been extensively classroom tested by the author at Case Western Reserve University in a course that enrolled seniors and graduate students majoring in mathematics, statistics, engineering, physics, chemistry, economics and mathematical finance. The last topic proved to be particularly popular among students looking for careers on Wall Street and in research organizations devoted to financial problems. Features Quickly and concisely builds from basic probability theory to advanced topics Suitable as a primary text for an advanced course in diffusion processes and stochastic differential equations Useful as supplementary reading across a range of topics.
Publisher: CRC Press
ISBN: 1000475352
Category : Mathematics
Languages : en
Pages : 138
Book Description
Diffusion Processes, Jump Processes, and Stochastic Differential Equations provides a compact exposition of the results explaining interrelations between diffusion stochastic processes, stochastic differential equations and the fractional infinitesimal operators. The draft of this book has been extensively classroom tested by the author at Case Western Reserve University in a course that enrolled seniors and graduate students majoring in mathematics, statistics, engineering, physics, chemistry, economics and mathematical finance. The last topic proved to be particularly popular among students looking for careers on Wall Street and in research organizations devoted to financial problems. Features Quickly and concisely builds from basic probability theory to advanced topics Suitable as a primary text for an advanced course in diffusion processes and stochastic differential equations Useful as supplementary reading across a range of topics.
Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems
Author: M. Reza Rahimi Tabar
Publisher: Springer
ISBN: 3030184722
Category : Science
Languages : en
Pages : 290
Book Description
This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristics of the fluctuations (including diffusion and jump contributions), and construct a stochastic evolution equation? Here, the term "non-parametrically" exemplifies that all the functions and parameters of the constructed stochastic evolution equation can be determined directly from the measured data. The book provides an overview of methods that have been developed for the analysis of fluctuating time series and of spatially disordered structures. Thanks to its feasibility and simplicity, it has been successfully applied to fluctuating time series and spatially disordered structures of complex systems studied in scientific fields such as physics, astrophysics, meteorology, earth science, engineering, finance, medicine and the neurosciences, and has led to a number of important results. The book also includes the numerical and analytical approaches to the analyses of complex time series that are most common in the physical and natural sciences. Further, it is self-contained and readily accessible to students, scientists, and researchers who are familiar with traditional methods of mathematics, such as ordinary, and partial differential equations. The codes for analysing continuous time series are available in an R package developed by the research group Turbulence, Wind energy and Stochastic (TWiSt) at the Carl von Ossietzky University of Oldenburg under the supervision of Prof. Dr. Joachim Peinke. This package makes it possible to extract the (stochastic) evolution equation underlying a set of data or measurements.
Publisher: Springer
ISBN: 3030184722
Category : Science
Languages : en
Pages : 290
Book Description
This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristics of the fluctuations (including diffusion and jump contributions), and construct a stochastic evolution equation? Here, the term "non-parametrically" exemplifies that all the functions and parameters of the constructed stochastic evolution equation can be determined directly from the measured data. The book provides an overview of methods that have been developed for the analysis of fluctuating time series and of spatially disordered structures. Thanks to its feasibility and simplicity, it has been successfully applied to fluctuating time series and spatially disordered structures of complex systems studied in scientific fields such as physics, astrophysics, meteorology, earth science, engineering, finance, medicine and the neurosciences, and has led to a number of important results. The book also includes the numerical and analytical approaches to the analyses of complex time series that are most common in the physical and natural sciences. Further, it is self-contained and readily accessible to students, scientists, and researchers who are familiar with traditional methods of mathematics, such as ordinary, and partial differential equations. The codes for analysing continuous time series are available in an R package developed by the research group Turbulence, Wind energy and Stochastic (TWiSt) at the Carl von Ossietzky University of Oldenburg under the supervision of Prof. Dr. Joachim Peinke. This package makes it possible to extract the (stochastic) evolution equation underlying a set of data or measurements.
Applied Stochastic Differential Equations
Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327
Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327
Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Stochastic Flows and Jump-Diffusions
Author: Hiroshi Kunita
Publisher: Springer
ISBN: 9811338019
Category : Mathematics
Languages : en
Pages : 366
Book Description
This monograph presents a modern treatment of (1) stochastic differential equations and (2) diffusion and jump-diffusion processes. The simultaneous treatment of diffusion processes and jump processes in this book is unique: Each chapter starts from continuous processes and then proceeds to processes with jumps.In the first part of the book, it is shown that solutions of stochastic differential equations define stochastic flows of diffeomorphisms. Then, the relation between stochastic flows and heat equations is discussed. The latter part investigates fundamental solutions of these heat equations (heat kernels) through the study of the Malliavin calculus. The author obtains smooth densities for transition functions of various types of diffusions and jump-diffusions and shows that these density functions are fundamental solutions for various types of heat equations and backward heat equations. Thus, in this book fundamental solutions for heat equations and backward heat equations are constructed independently of the theory of partial differential equations.Researchers and graduate student in probability theory will find this book very useful.
Publisher: Springer
ISBN: 9811338019
Category : Mathematics
Languages : en
Pages : 366
Book Description
This monograph presents a modern treatment of (1) stochastic differential equations and (2) diffusion and jump-diffusion processes. The simultaneous treatment of diffusion processes and jump processes in this book is unique: Each chapter starts from continuous processes and then proceeds to processes with jumps.In the first part of the book, it is shown that solutions of stochastic differential equations define stochastic flows of diffeomorphisms. Then, the relation between stochastic flows and heat equations is discussed. The latter part investigates fundamental solutions of these heat equations (heat kernels) through the study of the Malliavin calculus. The author obtains smooth densities for transition functions of various types of diffusions and jump-diffusions and shows that these density functions are fundamental solutions for various types of heat equations and backward heat equations. Thus, in this book fundamental solutions for heat equations and backward heat equations are constructed independently of the theory of partial differential equations.Researchers and graduate student in probability theory will find this book very useful.
Numerical Solution of Stochastic Differential Equations
Author: Peter E. Kloeden
Publisher: Springer Science & Business Media
ISBN: 3662126168
Category : Mathematics
Languages : en
Pages : 666
Book Description
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP
Publisher: Springer Science & Business Media
ISBN: 3662126168
Category : Mathematics
Languages : en
Pages : 666
Book Description
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP
Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations
Author: Sergej S. Artemiev
Publisher: VSP
ISBN: 9789067642507
Category : Mathematics
Languages : en
Pages : 188
Book Description
This book deals with numerical analysis of systems of both ordinary and stochastic differential equations. The first chapter is devoted to numerical solution problems of the Cauchy problem for stiff ordinary differential equation (ODE) systems by Rosenbrock-type methods (RTMs). Here, general solutions of consistency equations are obtained, which lead to the construction of RTMs from the first to the fourth order. The second chapter deals with statistical simulation problems of the solution of the Cauchy problem for stochastic differential equation (SDE) systems. The mean-square convergence theorem is considered, as well as Taylor expansions of numerical solutions. Also included are applications of numerical methods of SDE solutions to partial differential equations and to analysis and synthesis problems of automated control of stochastic systems.
Publisher: VSP
ISBN: 9789067642507
Category : Mathematics
Languages : en
Pages : 188
Book Description
This book deals with numerical analysis of systems of both ordinary and stochastic differential equations. The first chapter is devoted to numerical solution problems of the Cauchy problem for stiff ordinary differential equation (ODE) systems by Rosenbrock-type methods (RTMs). Here, general solutions of consistency equations are obtained, which lead to the construction of RTMs from the first to the fourth order. The second chapter deals with statistical simulation problems of the solution of the Cauchy problem for stochastic differential equation (SDE) systems. The mean-square convergence theorem is considered, as well as Taylor expansions of numerical solutions. Also included are applications of numerical methods of SDE solutions to partial differential equations and to analysis and synthesis problems of automated control of stochastic systems.
Stochastic Numerics for Mathematical Physics
Author: Grigori N. Milstein
Publisher: Springer Nature
ISBN: 3030820408
Category : Computers
Languages : en
Pages : 754
Book Description
This book is a substantially revised and expanded edition reflecting major developments in stochastic numerics since the first edition was published in 2004. The new topics, in particular, include mean-square and weak approximations in the case of nonglobally Lipschitz coefficients of Stochastic Differential Equations (SDEs) including the concept of rejecting trajectories; conditional probabilistic representations and their application to practical variance reduction using regression methods; multi-level Monte Carlo method; computing ergodic limits and additional classes of geometric integrators used in molecular dynamics; numerical methods for FBSDEs; approximation of parabolic SPDEs and nonlinear filtering problem based on the method of characteristics. SDEs have many applications in the natural sciences and in finance. Besides, the employment of probabilistic representations together with the Monte Carlo technique allows us to reduce the solution of multi-dimensional problems for partial differential equations to the integration of stochastic equations. This approach leads to powerful computational mathematics that is presented in the treatise. Many special schemes for SDEs are presented. In the second part of the book numerical methods for solving complicated problems for partial differential equations occurring in practical applications, both linear and nonlinear, are constructed. All the methods are presented with proofs and hence founded on rigorous reasoning, thus giving the book textbook potential. An overwhelming majority of the methods are accompanied by the corresponding numerical algorithms which are ready for implementation in practice. The book addresses researchers and graduate students in numerical analysis, applied probability, physics, chemistry, and engineering as well as mathematical biology and financial mathematics.
Publisher: Springer Nature
ISBN: 3030820408
Category : Computers
Languages : en
Pages : 754
Book Description
This book is a substantially revised and expanded edition reflecting major developments in stochastic numerics since the first edition was published in 2004. The new topics, in particular, include mean-square and weak approximations in the case of nonglobally Lipschitz coefficients of Stochastic Differential Equations (SDEs) including the concept of rejecting trajectories; conditional probabilistic representations and their application to practical variance reduction using regression methods; multi-level Monte Carlo method; computing ergodic limits and additional classes of geometric integrators used in molecular dynamics; numerical methods for FBSDEs; approximation of parabolic SPDEs and nonlinear filtering problem based on the method of characteristics. SDEs have many applications in the natural sciences and in finance. Besides, the employment of probabilistic representations together with the Monte Carlo technique allows us to reduce the solution of multi-dimensional problems for partial differential equations to the integration of stochastic equations. This approach leads to powerful computational mathematics that is presented in the treatise. Many special schemes for SDEs are presented. In the second part of the book numerical methods for solving complicated problems for partial differential equations occurring in practical applications, both linear and nonlinear, are constructed. All the methods are presented with proofs and hence founded on rigorous reasoning, thus giving the book textbook potential. An overwhelming majority of the methods are accompanied by the corresponding numerical algorithms which are ready for implementation in practice. The book addresses researchers and graduate students in numerical analysis, applied probability, physics, chemistry, and engineering as well as mathematical biology and financial mathematics.
Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications
Author: Łukasz Delong
Publisher: Springer Science & Business Media
ISBN: 1447153316
Category : Mathematics
Languages : en
Pages : 285
Book Description
Backward stochastic differential equations with jumps can be used to solve problems in both finance and insurance. Part I of this book presents the theory of BSDEs with Lipschitz generators driven by a Brownian motion and a compensated random measure, with an emphasis on those generated by step processes and Lévy processes. It discusses key results and techniques (including numerical algorithms) for BSDEs with jumps and studies filtration-consistent nonlinear expectations and g-expectations. Part I also focuses on the mathematical tools and proofs which are crucial for understanding the theory. Part II investigates actuarial and financial applications of BSDEs with jumps. It considers a general financial and insurance model and deals with pricing and hedging of insurance equity-linked claims and asset-liability management problems. It additionally investigates perfect hedging, superhedging, quadratic optimization, utility maximization, indifference pricing, ambiguity risk minimization, no-good-deal pricing and dynamic risk measures. Part III presents some other useful classes of BSDEs and their applications. This book will make BSDEs more accessible to those who are interested in applying these equations to actuarial and financial problems. It will be beneficial to students and researchers in mathematical finance, risk measures, portfolio optimization as well as actuarial practitioners.
Publisher: Springer Science & Business Media
ISBN: 1447153316
Category : Mathematics
Languages : en
Pages : 285
Book Description
Backward stochastic differential equations with jumps can be used to solve problems in both finance and insurance. Part I of this book presents the theory of BSDEs with Lipschitz generators driven by a Brownian motion and a compensated random measure, with an emphasis on those generated by step processes and Lévy processes. It discusses key results and techniques (including numerical algorithms) for BSDEs with jumps and studies filtration-consistent nonlinear expectations and g-expectations. Part I also focuses on the mathematical tools and proofs which are crucial for understanding the theory. Part II investigates actuarial and financial applications of BSDEs with jumps. It considers a general financial and insurance model and deals with pricing and hedging of insurance equity-linked claims and asset-liability management problems. It additionally investigates perfect hedging, superhedging, quadratic optimization, utility maximization, indifference pricing, ambiguity risk minimization, no-good-deal pricing and dynamic risk measures. Part III presents some other useful classes of BSDEs and their applications. This book will make BSDEs more accessible to those who are interested in applying these equations to actuarial and financial problems. It will be beneficial to students and researchers in mathematical finance, risk measures, portfolio optimization as well as actuarial practitioners.