Numerical Simulation of Proppant Displacement in Scaled Fracture Networks

Numerical Simulation of Proppant Displacement in Scaled Fracture Networks PDF Author: Yibo Song
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
While hydraulic fracturing is recognized as the most effective stimulation technique for unconventional reservoirs, the production enhancement is influenced by several factors including proppant placement inside the fractures. The goal of this work is to understand the proppant transport and its placement process in "T" shaped fracture network through simulations. The proppant transport is studied numerically by coupling a computational fluid dynamic model for the base shear-thinning fluid and the discrete element methods for proppant particles. In the CFD model, the forces on proppants are calculated based on fluid properties, while fluid properties are updated based on the particle concentration at any point and time. In the DEM model, the motion and position of each individual proppant is calculated based on the gravity and drag forces from the CFD model, which makes it possible to reproduce some phenomena that cannot be simulated in continuum concentration-oriented models. A scaling analysis has been performed to scale down the model from field scale to lab scale by deriving relevant dimensionless variables. Different proppant size distributions and injection velocities are considered, as well as the friction and cohesion effects among particle and fracture surface. The simulation results show that in the primary fracture, the injected proppants could divide into three layers: the bottom sand bed zone, the middle surface rolling zone, and the top slurry flow zone. The total number of the proppants do not increase much after the sand dune reach an equilibrium height. A smaller size proppant would benefit the development of sand dune in the secondary fracture, whereas a larger proppant size would benefit the increase rate of the sand dune. The equilibrium height of sand dune in the minor fracture could be greater than the primary fracture, and the distribution of proppant dunes is symmetric. A lower proppant load would amplify the impact of friction as well as the erosion force, which would finally deliver a negative impact on equilibrium height. Two deposit mechanisms have also identified in the bypass fracture network.

Numerical Simulation of Proppant Displacement in Scaled Fracture Networks

Numerical Simulation of Proppant Displacement in Scaled Fracture Networks PDF Author: Yibo Song
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
While hydraulic fracturing is recognized as the most effective stimulation technique for unconventional reservoirs, the production enhancement is influenced by several factors including proppant placement inside the fractures. The goal of this work is to understand the proppant transport and its placement process in "T" shaped fracture network through simulations. The proppant transport is studied numerically by coupling a computational fluid dynamic model for the base shear-thinning fluid and the discrete element methods for proppant particles. In the CFD model, the forces on proppants are calculated based on fluid properties, while fluid properties are updated based on the particle concentration at any point and time. In the DEM model, the motion and position of each individual proppant is calculated based on the gravity and drag forces from the CFD model, which makes it possible to reproduce some phenomena that cannot be simulated in continuum concentration-oriented models. A scaling analysis has been performed to scale down the model from field scale to lab scale by deriving relevant dimensionless variables. Different proppant size distributions and injection velocities are considered, as well as the friction and cohesion effects among particle and fracture surface. The simulation results show that in the primary fracture, the injected proppants could divide into three layers: the bottom sand bed zone, the middle surface rolling zone, and the top slurry flow zone. The total number of the proppants do not increase much after the sand dune reach an equilibrium height. A smaller size proppant would benefit the development of sand dune in the secondary fracture, whereas a larger proppant size would benefit the increase rate of the sand dune. The equilibrium height of sand dune in the minor fracture could be greater than the primary fracture, and the distribution of proppant dunes is symmetric. A lower proppant load would amplify the impact of friction as well as the erosion force, which would finally deliver a negative impact on equilibrium height. Two deposit mechanisms have also identified in the bypass fracture network.

Numerical Modeling of Nonlinear Problems in Hydraulic Fracturing

Numerical Modeling of Nonlinear Problems in Hydraulic Fracturing PDF Author: Endrina Rivas
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Hydraulic fracturing is a stimulation technique in which fluid is injected at high pressure into low-permeability reservoirs to create a fracture network for enhanced production of oil and gas. It is the primary purpose of hydraulic fracturing to enhance well production. The three main mechanisms during hydraulic fracturing for oil and gas production which largely impact the reservoir production are: (1) fracture propagation during initial pad fluid injection, which defines the extent of the fracture; (2) fracture propagation during injection of proppant slurry (fluid mixed with granular material), creating a propped reservoir zone; and (3) shear dilation of natural fractures surrounding the hydraulically fractured zone, creating a broader stimulated zone. The thesis has three objectives that support the simulation of mechanisms that lead to enhanced production of a hydraulically-fractured reservoir. The first objective is to develop a numerical model for the simulation of the mechanical deformation and shear dilation of naturally fractured rock masses. In this work, a two-dimensional model for the simulation of discrete fracture networks (DFN) is developed using the extended finite element method (XFEM), in which the mesh does not conform to the natural fracture network. The model incorporates contact, cohesion, and friction between blocks of rock. Shear dilation is an important mechanism impacting the overall nonlinear response of naturally fractured rock masses and is also included in the model--physics previously not simulated within an XFEM context. Here, shear dilation is modeled through a linear dilation model, capped by a dilation limiting displacement. Highly nonlinear problems involving multiple joint sets are investigated within a quasi-static context. An explicit scheme is used in conjunction with the dynamic relaxation technique to obtain equilibrium solutions in the face of the nonlinear constitutive models from contact, cohesion, friction, and dilation. The numerical implementation is verified and its convergence illustrated using a shear test and a biaxial test. The model is then applied to the practical problem of the stability of a slope of fractured rock. The second objective is to develop a numerical model for the simulation of proppant transport through planar fractures. This work presents the numerical methodology for simulation of proppant transport through a hydraulic fracture using the finite volume method. Proppant models commonly used in the hydraulic fracturing literature solve the linearized advection equation; this work presents solution methods for the nonlinear form of the proppant flux equation. The complexities of solving the nonlinear and heterogeneous hyperbolic advection equation that governs proppant transport are tackled, particularly handling shock waves that are generated due to the nonlinear flux function and the spatially-varying width and pressure gradient along the fracture. A critical time step is derived for the proppant transport problem solved using an explicit solution strategy. Additionally, a predictor-corrector algorithm is developed to constrain the proppant from exceeding the physically admissible range. The model can capture the mechanisms of proppant bridging occurring in sections of narrow fracture width, tip screen-out occurring when fractures become saturated with proppant, and flushing of proppant into new fracture segments. The results are verified by comparison with characteristic solutions and the model is used to simulate proppant transport through a KGD fracture. The final objective is to develop a numerical model for the simulation of proppant transport through propagating non-planar fractures. This work presents the first monolithic coupled numerical model for simulating proppant transport through a propagating hydraulic fracture. A fracture is propagated through a two-dimensional domain, driven by the flow of a proppant-laden slurry. Modeling of the slurry flow includes the effects of proppant bridging and the subsequent flow of fracturing fluid through the packed proppant pack. This allows for the simulation of a tip screen-out, a phenomenon in which there is a high degree of physical interaction between the rock deformation, fluid flow, and proppant transport. Tip screen-out also leads to shock wave formation in the solution. Numerical implementation of the model is verified and the model is then used to simulate a tip screen-out in both planar and non-planar fractures. An analysis of the fracture aperture, fluid pressure, and proppant concentration profiles throughout the simulation is performed for three different coupling schemes: monolithic, sequential, and loose coupling. It is demonstrated that even with time step refinement, the loosely-coupled scheme fails to converge to the same results as the monolithic and sequential schemes. The monolithic and sequential algorithms yield the same solution up to the onset of a tip screen-out, after which the sequential scheme fails to converge. The monolithic scheme is shown to be more efficient than the sequential algorithm (requiring fewer iterations) and has comparable computational cost to the loose coupling algorithm. Thus, the monolithic scheme is shown to be optimal in terms of computational efficiency, robustness, and accuracy. In addition to this finding, a robust and more efficient algorithm for injection-rate controlled hydraulic fracturing simulation based on global mass conservation is presented in the thesis.

Proppant Transport in Complex Fracture Networks

Proppant Transport in Complex Fracture Networks PDF Author: Christopher Allen Johnson Blyton
Publisher:
ISBN:
Category :
Languages : en
Pages : 320

Get Book Here

Book Description
Current hydraulic fracturing practice in unconventional resource development typically involves multiple fracturing stages, each consisting of the simultaneous creation of several fractures from a horizontal well. A large mass of proppant, often millions of pounds per well, is injected with the fluid to provide post-closure conductivity. Despite the large quantity of proppant used and its critical importance to well productivity, simple models are often applied to determine its placement in fractures. Propped or effective fracture lengths indicated by modeling may be 100 to 300% larger than the lengths inferred from production data. A common assumption is that the average proppant velocity due to pressure driven flow is equal to the average carrier fluid velocity, while the settling velocity calculation uses Stokes’ law. To more accurately determine the placement of proppant in a fracture, it is necessary to rigorously account for many effects not included in the above assumptions. In this study, the motion of particles flowing with a fluid between fracture walls has been simulated using a coupled computational fluid dynamics and discrete element method (CFD-DEM) that rigorously accounts for the both aspects of the problem. These simulations determine individual particle trajectories as particle to particle and particle to wall collisions occur and include the effect of fluid flow. The results show that the proppant concentration and the ratio of proppant diameter to fracture width govern the relative velocity of proppant and fluid. Proppant settling velocity has been examined for small fracture widths to delineate the effect of several independent variables, including concentration. Simulations demonstrate that larger concentration increases the average settling velocity, in apparent contrast with much of the available literature, which indicates that increased concentration reduces settling velocity. However, this is due to the absence of displacement driven counter current fluid flow. This demonstrates that proppant settling in a hydraulic fracture is more complex than usually considered. A proppant transport model developed from the results of the direct numerical simulations and existing correlations for particle settling velocity has been incorporated into a fully three-dimensional hydraulic fracturing simulator. This simulator couples fracture geomechanics with fluid flow and proppant transport considerations to enable the fracture geometry and proppant distribution to be determined rigorously. Two engineering fracture design parameters, injection rate and proppant diameter, have been varied to show the effect on proppant placement. This allows for an understanding of the relative importance of each and optimization of the treatment to a particular application. The presence of natural fractures in unconventional reservoirs can significantly contribute to well productivity. As proppant is transported along a hydraulic fracture, the presence of a dilated natural fracture forms a fluid accepting branch and may result in proppant entry. The proportion of proppant transported into a branch at steady state has been determined using the CFD-DEM approach and is presented via a dimensionless ‘particle transport coefficient’ through normalization by the proportion of fluid flowing into the branch. Reynolds number at the inlet, branch aperture and the angle of orientation between the main slot and branch, particle size and concentration each affect the transport coefficient. A very different physical process, which controls particle transport into a branch under certain conditions, is the formation of a stable particle bridge preventing subsequent particle transport into the branch. This phenomenon was observed in several simulation cases. The complete set of equations for a three-dimensional formulation of rectangular displacement discontinuity elements has been used to determine the width distribution of a hydraulic fracture and dilated natural fracture. The widths have been determined for several combinations of stress anisotropy, net pressure, hydraulic fracture height and length. The effect of the length, height and orientation of the natural fracture and the elastic moduli of the rock have also been examined. Of the cases examined, many show that natural fracture dilation does not occur. Further, of those cases where dilation is apparent, the proppant transport efficiency corresponding to the natural fracture width is significantly less than one and in many cases zero due to size exclusion. The location and orientation of the natural fracture do not significantly affect its width, while its length and the elastic moduli of the rock substantially change the width.

Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications

Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications PDF Author: Xinpu Shen
Publisher: CRC Press
ISBN: 1351796291
Category : Science
Languages : en
Pages : 192

Get Book Here

Book Description
The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.

Numerical Simulation of Fluid Flow, Proppant Transport and Fracture Propagation in Hydraulic Fractures for Unconventional Reservoirs

Numerical Simulation of Fluid Flow, Proppant Transport and Fracture Propagation in Hydraulic Fractures for Unconventional Reservoirs PDF Author: Yatin Suri
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Coupled 3-D Numerical Simulation of Proppant Transport and Fluid Flow in Hydraulic Fracturing

Coupled 3-D Numerical Simulation of Proppant Transport and Fluid Flow in Hydraulic Fracturing PDF Author: Bing Kong
Publisher:
ISBN:
Category : Gas reservoirs
Languages : en
Pages : 81

Get Book Here

Book Description


Multiphase Flow and Fluidization

Multiphase Flow and Fluidization PDF Author: Dimitri Gidaspow
Publisher: Elsevier
ISBN: 0080512267
Category : Science
Languages : en
Pages : 489

Get Book Here

Book Description
Useful as a reference for engineers in industry and as an advanced level text for graduate engineering students, Multiphase Flow and Fluidization takes the reader beyond the theoretical to demonstrate how multiphase flow equations can be used to provide applied, practical, predictive solutions to industrial fluidization problems. Written to help advance progress in the emerging science of multiphase flow, this book begins with the development of the conservation laws and moves on through kinetic theory, clarifying many physical concepts (such as particulate viscosity and solids pressure) and introducing the new dependent variable--the volume fraction of the dispersed phase. Exercises at the end of each chapterare provided for further study and lead into applications not covered in the text itself. Treats fluidization as a branch of transport phenomena Demonstrates how to do transient, multidimensional simulation of multiphase processes The first book to apply kinetic theory to flow of particulates Is the only book to discuss numerical stability of multiphase equations and whether or not such equations are well-posed Explains the origin of bubbles and the concept of critical granular flow Presents clearly written exercises at the end of each chapter to facilitate understanding and further study

Discrete Fracture Network Modeling of Hydraulic Stimulation

Discrete Fracture Network Modeling of Hydraulic Stimulation PDF Author: Mark W. McClure
Publisher: Springer Science & Business Media
ISBN: 3319003836
Category : Technology & Engineering
Languages : en
Pages : 96

Get Book Here

Book Description
Discrete Fracture Network Modeling of Hydraulic Stimulation describes the development and testing of a model that couples fluid-flow, deformation, friction weakening, and permeability evolution in large, complex two-dimensional discrete fracture networks. The model can be used to explore the behavior of hydraulic stimulation in settings where matrix permeability is low and preexisting fractures play an important role, such as Enhanced Geothermal Systems and gas shale. Used also to describe pure shear stimulation, mixed-mechanism stimulation, or pure opening-mode stimulation. A variety of novel techniques to ensure efficiency and realistic model behavior are implemented, and tested. The simulation methodology can also be used as an efficient method for directly solving quasistatic fracture contact problems. Results show how stresses induced by fracture deformation during stimulation directly impact the mechanism of propagation and the resulting fracture network.

Improvement of Fracture Conductivity Through Study of Proppant Transport and Chemical Stimulation

Improvement of Fracture Conductivity Through Study of Proppant Transport and Chemical Stimulation PDF Author: Songyang Tong
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
During hydraulic fracturing treatments, proppants - usually sand - are placed inside fractures to improve fracture conductivity. However, a large portion of the generated hydraulic fractures often remain unpropped after fracturing treatments. There are two primary reasons for this poor proppant placement. First, proppants settle quickly in common fracturing fluids (e.g., slickwater), which results in unpropped sections at the tip or top of the fracture. Second, a large number of the microfractures are too narrow to accommodate any common commercial proppant. Such unpropped fractures hold a large potential flow capacity as they exhibit a large contact area with the reservoir. However, their potential flow capacity is diminished during production due to closing of unpropped fractures because of closure stress. In this study, fractures are categorized as wider fractures, which are accessible to proppant, and narrower fractures, which are inaccessible to proppant. For wider fractures, proppant transport is important as proppant is needed for keeping them open. For narrower fractures, a chemical formulation is proposed as there is less physical restriction for fluids to flow inside across them. The chemical formulation is expected to improve fracture conductivity by generating roughness on fracture surfaces. This dissertation uses experiments and simulations to investigate proppant transport in a complex fracture network with laboratory-scale transparent fracture slots. Proppant size, injection flow rate and bypass fracture angle are varied and their effects are systematically evaluated. Based on experimental results, a straight-line relationship can be used to quantify the fraction of proppant that flows into bypass fractures with the total amount of proppant injected. A Computational Fluid Dynamics (CFD) model is developed to simulate the experiments; both qualitative and quantitative matches are achieved with this model. It is concluded that the fraction of proppant which flows into bypass fractures could be small unless a significant amount of proppant is injected, which indicates the inefficiency of slickwater in transporting proppant. An alternative fracturing fluid - foam - has been proposed to improve proppant placement because of its proppant carrying capacity. Foam is not a single-phase fluid, and it suffers liquid drainage with time due to gravity. Additionally, the existence of foam bubbles and lamellae could alter the movement of proppants. Experiments and simulations are performed to evaluate proppant placement in field-scale foam fracturing application. A liquid drainage model and a proppant settling correlation are developed and incorporated into an in-housing fracturing simulator. Results indicate that liquid drainage could negatively affect proppant placement, while dry foams could lead to negligible proppant settling and consequently uniform proppant placement. For narrower fractures, two chemical stimulation techniques are proposed to improve fracture conductivity by increasing fracture surface roughness. The first is a nanoparticle-microencapsulated acid (MEA) system for shale acidizing applications, and the second is a new technology which can generate mineral crystals on the shale surface to act as in-situ proppants. The MEA could be released as the fracture closes and the released acid could etch the surface of the rock locally, in a non-uniform way, to improve fracture conductivity (up to 40 times). Furthermore, the in-situ proppant generation technology can lead to crystal growth in both fracking water and formation brine conditions, and it also improves fracture conductivity (up to 10 times) based on core flooding experiments

Fracture to Production Workflow Applied to Proppant Permeability Damage Effects in Unconventional Reservoirs

Fracture to Production Workflow Applied to Proppant Permeability Damage Effects in Unconventional Reservoirs PDF Author: Kashif Naseem
Publisher:
ISBN:
Category :
Languages : en
Pages : 202

Get Book Here

Book Description
Most available data from shale production zones tends to point towards the presence of complex hydraulic fracture networks, especially in the Barnett and Marcellus formations. Representing these complex hydraulic fracture networks in reservoir simulators while incorporating the geo-mechanical parameters and fracture apertures is a challenge. In our work we developed a fracture to production simulation workflow using complex hydraulic fracture propagation model and a commercial reservoir simulator. The workflow was applied and validated using geological, stimulation and production data from the Marcellus shale. For validation, we used published data from a 5200 ft. long horizontal well drilled in the lower Marcellus. There were 14 fracturing stages with micro-seismic data and an available production history of 9 months. Complex hydraulic fractures simulations provided the fracture network geometry and aperture distributions as the output, which were up-scaled to grid block porosity and permeability values and imported into a reservoir model for production simulation and history match. The approach of using large grid blocks with conductivity adjustment to represent hydraulic fractures in a reservoir simulator which has been employed in this workflow was validated by comparing with published numerical and analytical solutions. Our results for history match were found to be in reasonable agreement with published results. The incorporation of apertures, complexity and geo-mechanics into reservoir models through this workflow reduces uncertainty in reservoir simulation of shale plays and leads to more realistic production forecasting. The workflow was utilized to study the effect of fracture conductivity damage on production. Homogenous and heterogeneous damage cases were considered. Capillary pressures, determined using empirical relationships and experimental data, were studied using the fracture to production workflow. Assuming homogenous instead of heterogeneous permeability damage in reservoir simulations was shown to have a significant impact on production forecasting, overestimating production by 70% or more over the course of two years. Capillary pressure however was less significant and ignoring capillary pressure in damaged hydraulic fractures led to only 3% difference in production in even the most damaged cases.