Numerical Simulation of Controlled Transition to Developed Turbulence in a Zero-pressure-gradient Flat-plate Boundary Layer

Numerical Simulation of Controlled Transition to Developed Turbulence in a Zero-pressure-gradient Flat-plate Boundary Layer PDF Author: Taraneh Sayadi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Laminar to turbulent transition has been a subject of intensive experimental, theoretical, and numerical research. The transition process causes flow parameters such as the skin friction coefficient and heat flux to increase rapidly from their laminar values and in some cases overshoot their nominal turbulent values during late transition. Therefore, predicting transition accurately is of interest in the design and performance analysis of engineering devices such as turbomachinery and flying vehicles. Direct numerical simulations (DNS) of Klebanoff (K- ) type and Herbert (H- ) type controlled transitions are performed for compressible (Ma = 0.2), zero-pressure-gradient flat plate boundary layers. Each calculation is carried out using approximately 1.1 billion grid points, required to directly resolve the small scale turbulent structures in the near-wall region of the flow. For H-type transition, the computational domain extends from Re_theta = 210, where laminar blowing and suction excites the most unstable fundamental wave and a pair of oblique waves, to fully turbulent stage at Re_theta = 1250. The computational domain for K-type transition extends to Re_theta = 1410. The evolutions of K-type and H-type disturbances are compared and contrasted across the entire transition process. In each case localized linear disturbance is amplified through weak non-linear instability that grows into Lambda-shaped vortices with harmonic wavelength. These two calculations serve as a benchmark to assess the performance of models in predicting transition. Several subgrid scale models including, constant coefficient Smagorinsky and Vreman models and their dynamic extensions, dynamic mixed scale-similarity, dynamic one-equation kinetic energy model, and global coefficient Vreman models are applied to these transitional scenarios. We assess the capability of each model to predict the location of transition and the skin friction throughout the transition process. The constant coefficient models fail to detect transition, but the dynamic procedure, by allowing for negligible turbulent viscosity in the early transition region, result in correct prediction of the point of transition. However, after secondary instabilities set in leading to the overshoot in the skin friction profile, all models (in coarse LES calculations) fail to produce sufficient subgrid scale shear stress required for the correct prediction of skin friction and the mean velocity profile. The same underprediction of skin friction persists into the turbulent region. Modes of dynamical importance in the transitional regime of the two controlled cases are then extracted using dynamic mode decomposition (DMD). The contribution of each mode to the total Reynolds shear stress is estimated by employing the triple mode decomposition methodology. It is shown that in both transitional cases a few modes provide a good estimate of the Reynolds shear stress gradient within the transitional region. As subgrid scale models fail to produce sufficient subgrid scale shear stress to compensate for the lack of resolution, these modes can potentially be used as a reduced order representation of the transitional regime.

Numerical Simulation of Controlled Transition to Developed Turbulence in a Zero-pressure-gradient Flat-plate Boundary Layer

Numerical Simulation of Controlled Transition to Developed Turbulence in a Zero-pressure-gradient Flat-plate Boundary Layer PDF Author: Taraneh Sayadi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Laminar to turbulent transition has been a subject of intensive experimental, theoretical, and numerical research. The transition process causes flow parameters such as the skin friction coefficient and heat flux to increase rapidly from their laminar values and in some cases overshoot their nominal turbulent values during late transition. Therefore, predicting transition accurately is of interest in the design and performance analysis of engineering devices such as turbomachinery and flying vehicles. Direct numerical simulations (DNS) of Klebanoff (K- ) type and Herbert (H- ) type controlled transitions are performed for compressible (Ma = 0.2), zero-pressure-gradient flat plate boundary layers. Each calculation is carried out using approximately 1.1 billion grid points, required to directly resolve the small scale turbulent structures in the near-wall region of the flow. For H-type transition, the computational domain extends from Re_theta = 210, where laminar blowing and suction excites the most unstable fundamental wave and a pair of oblique waves, to fully turbulent stage at Re_theta = 1250. The computational domain for K-type transition extends to Re_theta = 1410. The evolutions of K-type and H-type disturbances are compared and contrasted across the entire transition process. In each case localized linear disturbance is amplified through weak non-linear instability that grows into Lambda-shaped vortices with harmonic wavelength. These two calculations serve as a benchmark to assess the performance of models in predicting transition. Several subgrid scale models including, constant coefficient Smagorinsky and Vreman models and their dynamic extensions, dynamic mixed scale-similarity, dynamic one-equation kinetic energy model, and global coefficient Vreman models are applied to these transitional scenarios. We assess the capability of each model to predict the location of transition and the skin friction throughout the transition process. The constant coefficient models fail to detect transition, but the dynamic procedure, by allowing for negligible turbulent viscosity in the early transition region, result in correct prediction of the point of transition. However, after secondary instabilities set in leading to the overshoot in the skin friction profile, all models (in coarse LES calculations) fail to produce sufficient subgrid scale shear stress required for the correct prediction of skin friction and the mean velocity profile. The same underprediction of skin friction persists into the turbulent region. Modes of dynamical importance in the transitional regime of the two controlled cases are then extracted using dynamic mode decomposition (DMD). The contribution of each mode to the total Reynolds shear stress is estimated by employing the triple mode decomposition methodology. It is shown that in both transitional cases a few modes provide a good estimate of the Reynolds shear stress gradient within the transitional region. As subgrid scale models fail to produce sufficient subgrid scale shear stress to compensate for the lack of resolution, these modes can potentially be used as a reduced order representation of the transitional regime.

Direct Numerical Simulation of Turbulent Flow Over a Dimpled Flat Plate Using an Immersed Boundary Technique

Direct Numerical Simulation of Turbulent Flow Over a Dimpled Flat Plate Using an Immersed Boundary Technique PDF Author: Jeremiah J. Gutierrez-Jensen
Publisher:
ISBN:
Category : Computational fluid dynamics
Languages : en
Pages : 106

Get Book Here

Book Description
Many methods of passive flow control rely on changes to surface morphology. Roughening surfaces to induce boundary layer transition to turbulence and in turn delay separation is a powerful approach to lowering drag on bluff bodies. While the influence in broad terms of how roughness and other means of passive flow control to delay separation on bluff bodies is known, basic mechanisms are not well understood. Of particular interest for the current work is understanding the role of surface dimpling on boundary layers. A computational approach is employed and the study has two main goals. The first is to understand and advance the numerical methodology utilized for the computations. The second is to shed some light on the details of how surface dimples distort boundary layers and cause transition to turbulence. Simulations are performed of the flow over a simplified configuration: the flow of a boundary layer over a dimpled flat plate. The flow is modeled using an immersed boundary as a representation of the dimpled surface along with direct numerical simulation of the Navier-Stokes equations. The dimple geometry used is fixed and is that of a spherical depression in the flat plate with a depth-to-diameter ratio of 0.1. The dimples are arranged in staggered rows separated by spacing of the center of the bottom of the dimples by one diameter in both the spanwise and streamwise dimensions. The simulations are conducted for both two and three staggered rows of dimples. Flow variables are normalized at the inlet by the dimple depth and the Reynolds number is specified as 4000 (based on freestream velocity and inlet boundary layer thickness). First and second order statistics show the turbulent boundary layers correlate well to channel flow and flow of a zero pressure gradient flat plate boundary layers in the viscous sublayer and the buffer layer, but deviates further away from the wall. The forcing of transition to turbulence by the dimples is unlike the transition caused by a naturally transitioning flow, a small perturbation such as trip tape in experimental flows, or noise in the inlet condition for computational flows.

Transition to Turbulence

Transition to Turbulence PDF Author: Tapan K. Sengupta
Publisher: Cambridge University Press
ISBN: 1108490417
Category : Technology & Engineering
Languages : en
Pages : 643

Get Book Here

Book Description
"Present understanding of transition to turbulence has now been studied over one hundred and fifty years. The path the studies have taken posed it as a modal eigenvalue problem. Some researchers have suggested alternative models without being specific. First-principle based approach of receptivity is the route to build bridges among ideas for solving the Navier-Stokes equation for specific canonical problems. This book highlights the mathematical physics, scientific computing, and new ideas and theories for nonlinear analyses of fluid flows, for which vorticity dynamics remain central. This book is a blend of classic with distinctly new ideas, which establish different dynamics of flows, from genesis to evolution of disturbance fields with rigorously developed methods to tracing coherent structures amidst the seemingly random and chaotic fluid dynamics of transitional and turbulent flows"--

Annual Research Briefs ...

Annual Research Briefs ... PDF Author: Center for Turbulence Research (U.S.)
Publisher:
ISBN:
Category : Turbulence
Languages : en
Pages : 434

Get Book Here

Book Description


Advances in Computation, Modeling and Control of Transitional and Turbulent Flows

Advances in Computation, Modeling and Control of Transitional and Turbulent Flows PDF Author: Tapan Kumar Sengupta
Publisher: World Scientific
ISBN: 9814635162
Category : Science
Languages : en
Pages : 551

Get Book Here

Book Description
"The role of high performance computing in current research on transitional and turbulent flows is undoubtedly very important. This review volume provides a good platform for leading experts and researchers in various fields of fluid mechanics dealing with transitional and turbulent flows to synergistically exchange ideas and present the state of the art in the fields. Contributed by eminent researchers, the book chapters feature keynote lectures, panel discussions and the best invited contributed papers."--

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702

Get Book Here

Book Description


The Origin of Turbulence in Near-Wall Flows

The Origin of Turbulence in Near-Wall Flows PDF Author: A.V. Boiko
Publisher: Springer Science & Business Media
ISBN: 3662047659
Category : Technology & Engineering
Languages : en
Pages : 273

Get Book Here

Book Description
The Origin of Species Charles Darwin The origin of turbulence in fluids is a long-standing problem and has been the focus of research for decades due to its great importance in a variety of engineering applications. Furthermore, the study of the origin of turbulence is part of the fundamental physical problem of turbulence description and the philosophical problem of determinism and chaos. At the end of the nineteenth century, Reynolds and Rayleigh conjectured that the reason of the transition of laminar flow to the 'sinuous' state is in stability which results in amplification of wavy disturbances and breakdown of the laminar regime. Heisenberg (1924) was the founder of linear hydrody namic stability theory. The first calculations of boundary layer stability were fulfilled in pioneer works of Tollmien (1929) and Schlichting (1932, 1933). Later Taylor (1936) hypothesized that the transition to turbulence is initi ated by free-stream oscillations inducing local separations near wall. Up to the 1940s, skepticism of the stability theory predominated, in particular due to the experimental results of Dryden (1934, 1936). Only the experiments of Schubauer and Skramstad (1948) revealed the determining role of insta bility waves in the transition. Now it is well established that the transition to turbulence in shear flows at small and moderate levels of environmental disturbances occurs through development of instability waves in the initial laminar flow. In Chapter 1 we start with the fundamentals of stability theory, employing results of the early studies and recent advances.

Stability and Transition in Shear Flows

Stability and Transition in Shear Flows PDF Author: Peter J. Schmid
Publisher: Springer Science & Business Media
ISBN: 1461301858
Category : Science
Languages : en
Pages : 561

Get Book Here

Book Description
A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.

IUTAM Laminar-Turbulent Transition

IUTAM Laminar-Turbulent Transition PDF Author: Spencer Sherwin
Publisher: Springer Nature
ISBN: 3030679020
Category : Computers
Languages : en
Pages : 809

Get Book Here

Book Description
This volume comprises the carefully revised papers of the 9th IUTAM Symposium on Laminar-Turbulent Transition, held at the Imperial College, London, UK, in September 2019. The papers focus on the leading research in understanding transition to turbulence, which is a challenging topic of fluid mechanics and arises in many modern technologies as well as in nature. The proceedings are of interest for researchers in fluid mechanics and industry who have to handle these types of problems, such as in the aeronautical sector.

Applied mechanics reviews

Applied mechanics reviews PDF Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 400

Get Book Here

Book Description