Numerical Polynomial Algebra

Numerical Polynomial Algebra PDF Author: Hans J. Stetter
Publisher: SIAM
ISBN: 0898715571
Category : Mathematics
Languages : en
Pages : 475

Get Book Here

Book Description
This book is the first comprehensive treatment of numerical polynomial algebra, an area which so far has received little attention.

Numerical Polynomial Algebra

Numerical Polynomial Algebra PDF Author: Hans J. Stetter
Publisher: SIAM
ISBN: 0898715571
Category : Mathematics
Languages : en
Pages : 475

Get Book Here

Book Description
This book is the first comprehensive treatment of numerical polynomial algebra, an area which so far has received little attention.

Numerically Solving Polynomial Systems with Bertini

Numerically Solving Polynomial Systems with Bertini PDF Author: Daniel J. Bates
Publisher: SIAM
ISBN: 1611972698
Category : Science
Languages : en
Pages : 372

Get Book Here

Book Description
This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic sets, methods for treating singular sets, the nascent field of real numerical algebraic geometry, and applications to large polynomial systems arising from differential equations. Those who wish to solve polynomial systems can start gently by finding isolated solutions to small systems, advance rapidly to using algorithms for finding positive-dimensional solution sets (curves, surfaces, etc.), and learn how to use parallel computers on large problems. These techniques are of interest to engineers and scientists in fields where polynomial equations arise, including robotics, control theory, economics, physics, numerical PDEs, and computational chemistry.

Computer Algebra and Polynomials

Computer Algebra and Polynomials PDF Author: Jaime Gutierrez
Publisher: Springer
ISBN: 3319150812
Category : Computers
Languages : en
Pages : 222

Get Book Here

Book Description
Algebra and number theory have always been counted among the most beautiful mathematical areas with deep proofs and elegant results. However, for a long time they were not considered that important in view of the lack of real-life applications. This has dramatically changed: nowadays we find applications of algebra and number theory frequently in our daily life. This book focuses on the theory and algorithms for polynomials over various coefficient domains such as a finite field or ring. The operations on polynomials in the focus are factorization, composition and decomposition, basis computation for modules, etc. Algorithms for such operations on polynomials have always been a central interest in computer algebra, as it combines formal (the variables) and algebraic or numeric (the coefficients) aspects. The papers presented were selected from the Workshop on Computer Algebra and Polynomials, which was held in Linz at the Johann Radon Institute for Computational and Applied Mathematics (RICAM) during November 25-29, 2013, at the occasion of the Special Semester on Applications of Algebra and Number Theory.

Numerical Polynomial Algebra

Numerical Polynomial Algebra PDF Author: Hans J. Stetter
Publisher: SIAM
ISBN: 9780898717976
Category : Mathematics
Languages : en
Pages : 487

Get Book Here

Book Description
In many important areas of scientific computing, polynomials in one or more variables are employed in the mathematical modeling of real-life phenomena; yet most of classical computer algebra assumes exact rational data. This book is the first comprehensive treatment of the emerging area of numerical polynomial algebra, an area that falls between classical numerical analysis and classical computer algebra but, surprisingly, has received little attention so far. The author introduces a conceptual framework that permits the meaningful solution of various algebraic problems with multivariate polynomial equations whose coefficients have some indeterminacy; for this purpose, he combines approaches of both numerical linear algebra and commutative algebra. For the application scientist, Numerical Polynomial Algebra provides both a survey of polynomial problems in scientific computing that may be solved numerically and a guide to their numerical treatment. In addition, the book provides both introductory sections and novel extensions of numerical analysis and computer algebra, making it accessible to the reader with expertise in either one of these areas.

A Polynomial Approach to Linear Algebra

A Polynomial Approach to Linear Algebra PDF Author: Paul A. Fuhrmann
Publisher: Springer Science & Business Media
ISBN: 1441987347
Category : Mathematics
Languages : en
Pages : 368

Get Book Here

Book Description
A Polynomial Approach to Linear Algebra is a text which is heavily biased towards functional methods. In using the shift operator as a central object, it makes linear algebra a perfect introduction to other areas of mathematics, operator theory in particular. This technique is very powerful as becomes clear from the analysis of canonical forms (Frobenius, Jordan). It should be emphasized that these functional methods are not only of great theoretical interest, but lead to computational algorithms. Quadratic forms are treated from the same perspective, with emphasis on the important examples of Bezoutian and Hankel forms. These topics are of great importance in applied areas such as signal processing, numerical linear algebra, and control theory. Stability theory and system theoretic concepts, up to realization theory, are treated as an integral part of linear algebra. Finally there is a chapter on Hankel norm approximation for the case of scalar rational functions which allows the reader to access ideas and results on the frontier of current research.

The Numerical Solution Of Systems Of Polynomials Arising In Engineering And Science

The Numerical Solution Of Systems Of Polynomials Arising In Engineering And Science PDF Author: Andrew J Sommese
Publisher: World Scientific
ISBN: 9814480886
Category : Mathematics
Languages : en
Pages : 425

Get Book Here

Book Description
Written by the founders of the new and expanding field of numerical algebraic geometry, this is the first book that uses an algebraic-geometric approach to the numerical solution of polynomial systems and also the first one to treat numerical methods for finding positive dimensional solution sets. The text covers the full theory from methods developed for isolated solutions in the 1980's to the most recent research on positive dimensional sets.

Numerical Solution of Algebraic Riccati Equations

Numerical Solution of Algebraic Riccati Equations PDF Author: Dario A. Bini
Publisher: SIAM
ISBN: 1611972086
Category : Mathematics
Languages : en
Pages : 261

Get Book Here

Book Description
This treatment of the basic theory of algebraic Riccati equations describes the classical as well as the more advanced algorithms for their solution in a manner that is accessible to both practitioners and scholars. It is the first book in which nonsymmetric algebraic Riccati equations are treated in a clear and systematic way. Some proofs of theoretical results have been simplified and a unified notation has been adopted. Readers will find a unified discussion of doubling algorithms, which are effective in solving algebraic Riccati equations as well as a detailed description of all classical and advanced algorithms for solving algebraic Riccati equations and their MATLAB codes. This will help the reader gain an understanding of the computational issues and provide ready-to-use implementation of the different solution techniques.

Solving Transcendental Equations

Solving Transcendental Equations PDF Author: John P. Boyd
Publisher: SIAM
ISBN: 161197352X
Category : Mathematics
Languages : en
Pages : 446

Get Book Here

Book Description
Transcendental equations arise in every branch of science and engineering. While most of these equations are easy to solve, some are not, and that is where this book serves as the mathematical equivalent of a skydiver's reserve parachute--not always needed, but indispensible when it is. The author's goal is to teach the art of finding the root of a single algebraic equation or a pair of such equations.

Applications of Polynomial Systems

Applications of Polynomial Systems PDF Author: David A. Cox
Publisher: American Mathematical Soc.
ISBN: 1470451379
Category : Education
Languages : en
Pages : 264

Get Book Here

Book Description
Systems of polynomial equations can be used to model an astonishing variety of phenomena. This book explores the geometry and algebra of such systems and includes numerous applications. The book begins with elimination theory from Newton to the twenty-first century and then discusses the interaction between algebraic geometry and numerical computations, a subject now called numerical algebraic geometry. The final three chapters discuss applications to geometric modeling, rigidity theory, and chemical reaction networks in detail. Each chapter ends with a section written by a leading expert. Examples in the book include oil wells, HIV infection, phylogenetic models, four-bar mechanisms, border rank, font design, Stewart-Gough platforms, rigidity of edge graphs, Gaussian graphical models, geometric constraint systems, and enzymatic cascades. The reader will encounter geometric objects such as Bézier patches, Cayley-Menger varieties, and toric varieties; and algebraic objects such as resultants, Rees algebras, approximation complexes, matroids, and toric ideals. Two important subthemes that appear in multiple chapters are toric varieties and algebraic statistics. The book also discusses the history of elimination theory, including its near elimination in the middle of the twentieth century. The main goal is to inspire the reader to learn about the topics covered in the book. With this in mind, the book has an extensive bibliography containing over 350 books and papers.

Numerical Methods for Roots of Polynomials - Part II

Numerical Methods for Roots of Polynomials - Part II PDF Author: J.M. McNamee
Publisher: Newnes
ISBN: 008093143X
Category : Mathematics
Languages : en
Pages : 749

Get Book Here

Book Description
Numerical Methods for Roots of Polynomials - Part II along with Part I (9780444527295) covers most of the traditional methods for polynomial root-finding such as interpolation and methods due to Graeffe, Laguerre, and Jenkins and Traub. It includes many other methods and topics as well and has a chapter devoted to certain modern virtually optimal methods. Additionally, there are pointers to robust and efficient programs. This book is invaluable to anyone doing research in polynomial roots, or teaching a graduate course on that topic. - First comprehensive treatment of Root-Finding in several decades with a description of high-grade software and where it can be downloaded - Offers a long chapter on matrix methods and includes Parallel methods and errors where appropriate - Proves invaluable for research or graduate course