Numerical Methods for Multi-fluid Flows . Final Progress Report

Numerical Methods for Multi-fluid Flows . Final Progress Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 3

Get Book Here

Book Description
The central objective of this research has been to develop efficient numerical methods for computing multi-fluid flows with large interfacial deformations, and apply these methods to study the rheology of suspensions of deformable particles with viscous and non-Newtonian interfacial behavior. The mathematical formulation employs boundary-integral, immersed-boundary, and related numerical methods. Particles of interest include liquid drops with constant surface tension and capsules whose interfaces exhibit viscoelastic and incompressible characteristics. In one family of problems, the author has considered the shear-driven and pressure-driven flow of a suspension of two-dimensional liquid drops with ordered and random structure. In a second series of investigations, the author carried out dynamic simulations of two-dimensional, unbounded, doubly-periodic shear flows with random structure. Another family of problems addresses the deformation of three-dimensional capsules whose interfaces exhibit isotropic surface tension, viscous, elastic, or incompressible behavior, in simple shear flow. The numerical results extend previous asymptotic theories for small deformations and illuminate the mechanism of membrane rupture.

Numerical Methods for Multi-fluid Flows . Final Progress Report

Numerical Methods for Multi-fluid Flows . Final Progress Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 3

Get Book Here

Book Description
The central objective of this research has been to develop efficient numerical methods for computing multi-fluid flows with large interfacial deformations, and apply these methods to study the rheology of suspensions of deformable particles with viscous and non-Newtonian interfacial behavior. The mathematical formulation employs boundary-integral, immersed-boundary, and related numerical methods. Particles of interest include liquid drops with constant surface tension and capsules whose interfaces exhibit viscoelastic and incompressible characteristics. In one family of problems, the author has considered the shear-driven and pressure-driven flow of a suspension of two-dimensional liquid drops with ordered and random structure. In a second series of investigations, the author carried out dynamic simulations of two-dimensional, unbounded, doubly-periodic shear flows with random structure. Another family of problems addresses the deformation of three-dimensional capsules whose interfaces exhibit isotropic surface tension, viscous, elastic, or incompressible behavior, in simple shear flow. The numerical results extend previous asymptotic theories for small deformations and illuminate the mechanism of membrane rupture.

Comparison of numerical methods for fluid flows : interim report

Comparison of numerical methods for fluid flows : interim report PDF Author: J. H. Stuhmiller
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Numerical Methods in Fluid Dynamics

Numerical Methods in Fluid Dynamics PDF Author: Hans Jochen Wirz
Publisher: Hemisphere Pub
ISBN:
Category : Science
Languages : en
Pages : 436

Get Book Here

Book Description


Numerical Methods for Two-phase Incompressible Flows

Numerical Methods for Two-phase Incompressible Flows PDF Author: Sven Gross
Publisher: Springer Science & Business Media
ISBN: 3642196861
Category : Mathematics
Languages : en
Pages : 487

Get Book Here

Book Description
This book is the first monograph providing an introduction to and an overview of numerical methods for the simulation of two-phase incompressible flows. The Navier-Stokes equations describing the fluid dynamics are examined in combination with models for mass and surfactant transport. The book pursues a comprehensive approach: important modeling issues are treated, appropriate weak formulations are derived, level set and finite element discretization techniques are analyzed, efficient iterative solvers are investigated, implementational aspects are considered and the results of numerical experiments are presented. The book is aimed at M Sc and PhD students and other researchers in the fields of Numerical Analysis and Computational Engineering Science interested in the numerical treatment of two-phase incompressible flows.

Numerical Methods for Fluid Dynamics V

Numerical Methods for Fluid Dynamics V PDF Author: K. W. Morton
Publisher: Oxford University Press
ISBN: 9780198514800
Category : Mathematics
Languages : en
Pages : 650

Get Book Here

Book Description
This book contains the proceedings of an international conference on Numerical Methods for Fluid Dynamics held at the University of Oxford in April 1995. It provides a summary of recent research on the computational aspects of fluid dynamics. It includes contributions from many distinguished mathematicians and engineers and, as always, the standard of papers is high. The main themes of the book are algorithms and algorithmic needs arising from applications, Navier-Stokes on flexible grids, and environmental computational fluid dynamics. Graduate students of numerical analysis will find the up-to-date coverage of research in this book very useful.

Numerical Simulation of Multi-fluid Flows with the Particle Finite Element Method

Numerical Simulation of Multi-fluid Flows with the Particle Finite Element Method PDF Author: M. de Mier
Publisher:
ISBN: 9788496736870
Category :
Languages : en
Pages : 178

Get Book Here

Book Description


Numerical Methods for the Simulation of Multi-phase and Complex Flow

Numerical Methods for the Simulation of Multi-phase and Complex Flow PDF Author: T. M. M. Verheggen
Publisher: Lecture Notes in Control and I
ISBN:
Category : Science
Languages : en
Pages : 168

Get Book Here

Book Description
The nine review articles contained here introduce the techniques required touse lattice gas methods for numerical simulations of complex flows. Furthermore, lattice Boltzmann models are studied together with classical numerical techniques. The editors have written an extensive introductionto this exciting new approach to solving practical problems in modelling andsimulating flows. The book addresses numerical analysts and engineers in fluid mechanics, but also graduate students.

Multiphase Flow Dynamics 1

Multiphase Flow Dynamics 1 PDF Author: Nikolay Ivanov Kolev
Publisher: Springer Science & Business Media
ISBN: 3642206050
Category : Technology & Engineering
Languages : en
Pages : 810

Get Book Here

Book Description
Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the obtained system of partial differential equations. Finally the analysis is repeated for boundary fitted curvilinear coordinate systems designing methods applicable for interconnected multi-blocks. This fourth edition includes various updates, extensions, improvements and corrections. "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended.” BERND PLATZER, ZAAM In the present first volume the local volume and time averaging is used to derive a complete set of conservation equations for three fluids each of them having multi components as constituents. Large parts of the book are devoted on the design of successful numerical methods for solving the obtained system of partial differential equations. Finally the analysis is repeated for boundary fitted curvilinear coordinate systems designing methods applicable for interconnected multi-blocks. This fourth edition includes various updates, extensions, improvements and corrections. "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended.” BERND PLATZER, ZAAM

Multiphase Flow

Multiphase Flow PDF Author: S. Hernández
Publisher: WIT Press
ISBN: 1784664170
Category : Science
Languages : en
Pages : 136

Get Book Here

Book Description
The research included in this volume focuses on using synergies between experimental and computational techniques to gain a better understanding of all classes of multiphase and complex flow. The included papers illustrate the close interaction between numerical modellers and researchers working to gradually resolve the many outstanding issues in our understanding of multiphase flow. Recently multiphase fluid dynamics have generated a great deal of attention, leading to many notable advances in experimental, analytical and numerical studies. Progress in numerical methods has permitted the solution of many practical problems, helping to improve our understanding of the physics involved. Multiphase flows are found in all areas of technology and the range of related problems of interest is vast, including astrophysics, biology, geophysics, atmospheric process, and many areas of engineering.

Numerical Simulation of Multi-fluid Flows with the Particle Finite Element Method

Numerical Simulation of Multi-fluid Flows with the Particle Finite Element Method PDF Author: M. de Mier
Publisher:
ISBN: 9788496736870
Category :
Languages : en
Pages : 0

Get Book Here

Book Description