Numerical Solutions of Initial Value Problems Using Mathematica

Numerical Solutions of Initial Value Problems Using Mathematica PDF Author: Sujaul Chowdhury
Publisher: Morgan & Claypool Publishers
ISBN: 1681749750
Category : Science
Languages : en
Pages : 64

Get Book Here

Book Description
The book contains a detailed account of numerical solutions of differential equations of elementary problems of Physics using Euler and 2nd order Runge-Kutta methods and Mathematica 6.0. The problems are motion under constant force (free fall), motion under Hooke's law force (simple harmonic motion), motion under combination of Hooke's law force and a velocity dependent damping force (damped harmonic motion) and radioactive decay law. Also included are uses of Mathematica in dealing with complex numbers, in solving system of linear equations, in carrying out differentiation and integration, and in dealing with matrices.

Numerical Solutions of Initial Value Problems Using Mathematica

Numerical Solutions of Initial Value Problems Using Mathematica PDF Author: Sujaul Chowdhury
Publisher: Morgan & Claypool Publishers
ISBN: 1681749750
Category : Science
Languages : en
Pages : 64

Get Book Here

Book Description
The book contains a detailed account of numerical solutions of differential equations of elementary problems of Physics using Euler and 2nd order Runge-Kutta methods and Mathematica 6.0. The problems are motion under constant force (free fall), motion under Hooke's law force (simple harmonic motion), motion under combination of Hooke's law force and a velocity dependent damping force (damped harmonic motion) and radioactive decay law. Also included are uses of Mathematica in dealing with complex numbers, in solving system of linear equations, in carrying out differentiation and integration, and in dealing with matrices.

Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations PDF Author: David F. Griffiths
Publisher: Springer Science & Business Media
ISBN: 0857291483
Category : Mathematics
Languages : en
Pages : 274

Get Book Here

Book Description
Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com

Numerical Methods for Initial Value Problems in Physics

Numerical Methods for Initial Value Problems in Physics PDF Author: Francisco S. Guzmán
Publisher: Springer Nature
ISBN: 3031335562
Category : Science
Languages : en
Pages : 365

Get Book Here

Book Description
This textbook is a comprehensive overview of the construction, implementation, and application of important numerical methods for the solution of Initial Value Problems (IVPs). Beginning with IVPs involving Ordinary Differential Equations (ODEs) and progressing to problems with Partial Differential Equations (PDEs) in 1+1 and 3+1 dimensions, it provides readers with a clear and systematic progression from simple to complex concepts. The numerical methods selected in this textbook can solve a considerable variety of problems and the applications presented cover a wide range of topics, including population dynamics, chaos, celestial mechanics, geophysics, astrophysics, and more. Each chapter contains a variety of solved problems and exercises, with code included. These examples are designed to motivate and inspire readers to delve deeper into the state-of-the-art problems in their own fields. The code is written in Fortran 90, in a library-free style, making them easy to program and efficient to run. The appendix also includes the same code in C++, making the book accessible to a variety of programming backgrounds. At the end of each chapter, there are brief descriptions of how the methods could be improved, along with one or two projects that can be developed with the methods and codes described. These projects are highly engaging, from synchronization of chaos and message encryption to gravitational waves emitted by a binary system and non-linear absorption of a scalar field. With its clear explanations, hands-on approach, and practical examples, this textbook is an essential resource for advanced undergraduate and graduate students who want to the learn how to use numerical methods to tackle challenging problems.

Numerical Methods for Initial Value Problems in Ordinary Differential Equations

Numerical Methods for Initial Value Problems in Ordinary Differential Equations PDF Author: Simeon Ola Fatunla
Publisher: Academic Press
ISBN: 1483269264
Category : Mathematics
Languages : en
Pages : 308

Get Book Here

Book Description
Numerical Method for Initial Value Problems in Ordinary Differential Equations deals with numerical treatment of special differential equations: stiff, stiff oscillatory, singular, and discontinuous initial value problems, characterized by large Lipschitz constants. The book reviews the difference operators, the theory of interpolation, first integral mean value theorem, and numerical integration algorithms. The text explains the theory of one-step methods, the Euler scheme, the inverse Euler scheme, and also Richardson's extrapolation. The book discusses the general theory of Runge-Kutta processes, including the error estimation, and stepsize selection of the R-K process. The text evaluates the different linear multistep methods such as the explicit linear multistep methods (Adams-Bashforth, 1883), the implicit linear multistep methods (Adams-Moulton scheme, 1926), and the general theory of linear multistep methods. The book also reviews the existing stiff codes based on the implicit/semi-implicit, singly/diagonally implicit Runge-Kutta schemes, the backward differentiation formulas, the second derivative formulas, as well as the related extrapolation processes. The text is intended for undergraduates in mathematics, computer science, or engineering courses, andfor postgraduate students or researchers in related disciplines.

Discrete Numerical Methods in Physics and Engineering

Discrete Numerical Methods in Physics and Engineering PDF Author: Greenspan
Publisher: Academic Press
ISBN: 0080956165
Category : Computers
Languages : en
Pages : 325

Get Book Here

Book Description
Discrete Numerical Methods in Physics and Engineering

Difference Methods for Initial Value Problems

Difference Methods for Initial Value Problems PDF Author: Robert D. Richtmyer
Publisher:
ISBN: 9781258809560
Category :
Languages : en
Pages : 250

Get Book Here

Book Description


Difference Methods for Initial Value Problems

Difference Methods for Initial Value Problems PDF Author: Robert D. Richtmyer
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description


Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies

Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies PDF Author: You-lan Zhu
Publisher: Springer Science & Business Media
ISBN: 3662067072
Category : Mathematics
Languages : en
Pages : 606

Get Book Here

Book Description
Since the appearance of computers, numerical methods for discontinuous solutions of quasi-linear hyperbolic systems of partial differential equations have been among the most important research subjects in numerical analysis. The authors have developed a new difference method (named the singularity-separating method) for quasi-linear hyperbolic systems of partial differential equations. Its most important feature is that it possesses a high accuracy even for problems with singularities such as schocks, contact discontinuities, rarefaction waves and detonations. Besides the thorough description of the method itself, its mathematical foundation (stability-convergence theory of difference schemes for initial-boundary-value hyperbolic problems) and its application to supersonic flow around bodies are discussed. Further, the method of lines and its application to blunt body problems and conical flow problems are described in detail. This book should soon be an important working basis for both graduate students and researchers in the field of partial differential equations as well as in mathematical physics.

Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations PDF Author: J. C. Butcher
Publisher: John Wiley & Sons
ISBN: 0470868260
Category : Mathematics
Languages : en
Pages : 442

Get Book Here

Book Description
This new book updates the exceptionally popular Numerical Analysis of Ordinary Differential Equations. "This book is...an indispensible reference for any researcher."-American Mathematical Society on the First Edition. Features: * New exercises included in each chapter. * Author is widely regarded as the world expert on Runge-Kutta methods * Didactic aspects of the book have been enhanced by interspersing the text with exercises. * Updated Bibliography.

Numerical Methods for Ordinary Differential Systems

Numerical Methods for Ordinary Differential Systems PDF Author: J. D. Lambert
Publisher: Wiley-Blackwell
ISBN: 9780471929901
Category : Mathematics
Languages : en
Pages : 293

Get Book Here

Book Description
Numerical Methods for Ordinary Differential Systems The Initial Value Problem J. D. Lambert Professor of Numerical Analysis University of Dundee Scotland In 1973 the author published a book entitled Computational Methods in Ordinary Differential Equations. Since then, there have been many new developments in this subject and the emphasis has changed substantially. This book reflects these changes; it is intended not as a revision of the earlier work but as a complete replacement for it. Although some basic material appears in both books, the treatment given here is generally different and there is very little overlap. In 1973 there were many methods competing for attention but more recently there has been increasing emphasis on just a few classes of methods for which sophisticated implementations now exist. This book places much more emphasis on such implementations—and on the important topic of stiffness—than did its predecessor. Also included are accounts of the structure of variable-step, variable-order methods, the Butcher and the Albrecht theories for Runge—Kutta methods, order stars and nonlinear stability theory. The author has taken a middle road between analytical rigour and a purely computational approach, key results being stated as theorems but proofs being provided only where they aid the reader’s understanding of the result. Numerous exercises, from the straightforward to the demanding, are included in the text. This book will appeal to advanced students and teachers of numerical analysis and to users of numerical methods who wish to understand how algorithms for ordinary differential systems work and, on occasion, fail to work.